Treating Parkinson's Disease with Human Bone Marrow Mesenchymal Stem Cell Secretome: A Translational Investigation Using Human Brain Organoids and Different Routes of In Vivo Administration.
[en] Parkinson's disease (PD) is the most common movement disorder, characterized by the progressive loss of dopaminergic neurons from the nigrostriatal system. Currently, there is no treatment that retards disease progression or reverses damage prior to the time of clinical diagnosis. Mesenchymal stem cells (MSCs) are one of the most extensively studied cell sources for regenerative medicine applications, particularly due to the release of soluble factors and vesicles, known as secretome. The main goal of this work was to address the therapeutic potential of the secretome collected from bone-marrow-derived MSCs (BM-MSCs) using different models of the disease. Firstly, we took advantage of an optimized human midbrain-specific organoid system to model PD in vitro using a neurotoxin-induced model through 6-hydroxydopamine (6-OHDA) exposure. In vivo, we evaluated the effects of BM-MSC secretome comparing two different routes of secretome administration: intracerebral injections (a two-site single administration) against multiple systemic administration. The secretome of BM-MSCs was able to protect from dopaminergic neuronal loss, these effects being more evident in vivo. The BM-MSC secretome led to motor function recovery and dopaminergic loss protection; however, multiple systemic administrations resulted in larger therapeutic effects, making this result extremely relevant for potential future clinical applications.
Disciplines :
Biotechnology
Author, co-author :
Mendes-Pinheiro, Bárbara; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
Campos, Jonas ; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
Marote, Ana ; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
Soares-Cunha, Carina; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
NICKELS, Sarah Louise ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
MONZEL, Anna Sophia ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Developmental and Cellular Biology > Team Jens Christian SCHWAMBORN
Cibrão, Jorge R ; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
Loureiro-Campos, Eduardo; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
Serra, Sofia C; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
Barata-Antunes, Sandra ; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
Duarte-Silva, Sara ; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
Pinto, Luísa ; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
SCHWAMBORN, Jens Christian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
Salgado, António J; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ; ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
Treating Parkinson's Disease with Human Bone Marrow Mesenchymal Stem Cell Secretome: A Translational Investigation Using Human Brain Organoids and Different Routes of In Vivo Administration.
Publication date :
02 November 2023
Journal title :
Cells
eISSN :
2073-4409
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
Luxembourg National Research Fund Foundation for Science and Technology Norte Portugal Regional Operational Programme “la Caixa” Foundation Iniciativa Ibérica de Investigación y Innovación Biomedica Science and Technology
Funding text :
We acknowledge support from the National Centre of Excellence in Research on Parkinson’s Disease (NCER-PD) which is funded by the Luxembourg National Research Fund (FNR/NCER13/BM/11264123). This work has been funded by National funds, through the Foundation for Science and Technology (FCT)—project UIDB/50026/2020 and UIDP/50026/2020 and by the project NORTE-01-0145-FEDER-000039, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work was partially supported by “la Caixa” Foundation, (ID 100010434) and Fundação para a Ciência e a Tecnologia, I.P., through Iniciativa Ibérica de Investigación y Innovación Biomedica, under the agreement LCF/PR/HP20/52300001. This work was also supported by the Foundation for Science and Technology (FCT) through PhD Fellowships attributed to B.M.P. (SFRH/BD/120124/2016), E.L.C. (SFRH/BD/131278/2017), J.C. (SFRH/BD/5813/2020), S.B.A. (PD/BDE/135568/2018) J.R.C (SFRH/BD/145860/2019) and CEEC attributed to S.D.S. (CEECIND/00685/2020), and L.P. (CEECINST/00077/2018/CP1640/CT0003).
Poewe W. Seppi K. Tanner C.M. Halliday G.M. Brundin P. Volkmann J. Schrag A.-E. Lang A.E. Parkinson Disease Nat. Rev. Dis. Primers 2017 3 17013 10.1038/nrdp.2017.13
Bloem B.R. Okun M.S. Klein C. Parkinson’s Disease Lancet 2021 397 2284 2303 10.1016/S0140-6736(21)00218-X
Zahoor I. Shafi A. Haq E. Pharmacological Treatment of Parkinson’s Disease Parkinson’s Disease: Pathogenesis and Clinical Aspects Codon Publications Singapore 2018 Volume 311 129 144 0098-7484
Stoker T.B. Barker R.A. Recent Developments in the Treatment of Parkinson’s Disease F1000Research 2020 9 862 10.12688/f1000research.25634.1
Han Y. Li X. Zhang Y. Han Y. Chang F. Ding J. Mesenchymal Stem Cells for Regenerative Medicine Cells 2019 8 886 10.3390/cells8080886
Vizoso F. Eiro N. Cid S. Schneider J. Perez-Fernandez R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine Int. J. Mol. Sci. 2017 18 1852 10.3390/ijms18091852
Merimi M. El-Majzoub R. Lagneaux L. Moussa Agha D. Bouhtit F. Meuleman N. Fahmi H. Lewalle P. Fayyad-Kazan M. Najar M. The Therapeutic Potential of Mesenchymal Stromal Cells for Regenerative Medicine: Current Knowledge and Future Understandings Front. Cell Dev. Biol. 2021 9 661532 10.3389/fcell.2021.661532
Marques C.R. Marote A. Mendes-Pinheiro B. Teixeira F.G. Salgado A.J. Cell Secretome Based Approaches in Parkinson’s Disease Regenerative Medicine Expert Opin. Biol. Ther. 2018 18 1235 1245 10.1080/14712598.2018.1546840
Teixeira F.G. Carvalho M.M. Sousa N. Salgado A.J. Mesenchymal Stem Cells Secretome: A New Paradigm for Central Nervous System Regeneration? Cell. Mol. Life Sci. 2013 70 3871 3882 10.1007/s00018-013-1290-8
Pinho A.G. Cibrão J.R. Silva N.A. Monteiro S. Salgado A.J. Cell Secretome: Basic Insights and Therapeutic Opportunities for CNS Disorders Pharmaceuticals 2020 13 31 10.3390/ph13020031
Lázaro D.F. Pavlou M.A.S. Outeiro T.F. Cellular Models as Tools for the Study of the Role of Alpha-Synuclein in Parkinson’s Disease Exp. Neurol. 2017 298 162 171 10.1016/j.expneurol.2017.05.007
Cobb M.M. Ravisankar A. Skibinski G. Finkbeiner S. iPS Cells in the Study of PD Molecular Pathogenesis Cell Tissue Res. 2018 373 61 77 10.1007/s00441-017-2749-y
Smits L.M. Schwamborn J.C. Midbrain Organoids: A New Tool to Investigate Parkinson’s Disease Front. Cell Dev. Biol. 2020 8 359 10.3389/fcell.2020.00359 32509785
Lancaster M.A. Knoblich J.A. Organogenesis in a Dish: Modeling Development and Disease Using Organoid Technologies Science 2014 345 1247125 10.1126/science.1247125
Monzel A.S. Smits L.M. Hemmer K. Hachi S. Moreno E.L. van Wuellen T. Jarazo J. Walter J. Brüggemann I. Boussaad I. et al. Derivation of Human Midbrain-Specific Organoids from Neuroepithelial Stem Cells Stem Cell Rep. 2017 8 1144 1154 10.1016/j.stemcr.2017.03.010 28416282
Smits L.M. Reinhardt L. Reinhardt P. Glatza M. Monzel A.S. Stanslowsky N. Rosato-Siri M.D. Zanon A. Antony P.M. Bellmann J. et al. Modeling Parkinson’s Disease in Midbrain-like Organoids NPJ Park. Dis. 2019 5 5 10.1038/s41531-019-0078-4 30963107
Nickels S.L. Modamio J. Mendes-Pinheiro B. Monzel A.S. Betsou F. Schwamborn J.C. Reproducible Generation of Human Midbrain Organoids for in Vitro Modeling of Parkinson’s Disease Stem Cell Res. 2020 46 101870 10.1016/j.scr.2020.101870
Jarazo J. Barmpa K. Modamio J. Saraiva C. Sabaté-Soler S. Rosety I. Griesbeck A. Skwirblies F. Zaffaroni G. Smits L.M. et al. Parkinson’s Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by 2-Hydroxypropyl-β-Cyclodextrin Treatment Mov. Disord. 2022 37 80 94 10.1002/mds.28810
Zhu W. Tao M. Hong Y. Wu S. Chu C. Zheng Z. Han X. Zhu Q. Xu M. Ewing A.G. et al. Dysfunction of Vesicular Storage in Young-Onset Parkinson’s Patient-Derived Dopaminergic Neurons and Organoids Revealed by Single Cell Electrochemical Cytometry Chem. Sci. 2022 13 6217 6223 10.1039/D2SC00809B
Mohamed N.-V. Sirois J. Ramamurthy J. Mathur M. Lépine P. Deneault E. Maussion G. Nicouleau M. Chen C.X.-Q. Abdian N. et al. Midbrain Organoids with an SNCA Gene Triplication Model Key Features of Synucleinopathy Brain Commun. 2021 3 fcab223 10.1093/braincomms/fcab223
Boussaad I. Obermaier C.D. Hanss Z. Bobbili D.R. Bolognin S. Glaab E. Wołyńska K. Weisschuh N. De Conti L. May C. et al. A Patient-Based Model of RNA Mis-Splicing Uncovers Treatment Targets in Parkinson’s Disease Sci. Transl. Med. 2020 12 eaau3960 10.1126/scitranslmed.aau3960
Teixeira F.G. Carvalho M.M. Panchalingam K.M. Rodrigues A.J. Mendes-Pinheiro B. Anjo S. Manadas B. Behie L.A. Sousa N. Salgado A.J. Impact of the Secretome of Human Mesenchymal Stem Cells on Brain Structure and Animal Behavior in a Rat Model of Parkinson’s Disease STEM CELLS Transl. Med. 2017 6 634 646 10.5966/sctm.2016-0071 28191785
Mendes-Pinheiro B. Anjo S.I. Manadas B. Da Silva J.D. Marote A. Behie L.A. Teixeira F.G. Salgado A.J. Bone Marrow Mesenchymal Stem Cells’ Secretome Exerts Neuroprotective Effects in a Parkinson’s Disease Rat Model Front. Bioeng. Biotechnol. 2019 7 294 10.3389/fbioe.2019.00294
Garcia-Garcia E. Andrieux K. Gil S. Couvreur P. Colloidal Carriers and Blood-Brain Barrier (BBB) Translocation: A Way to Deliver Drugs to the Brain? Int. J. Pharm. 2005 298 274 292 10.1016/j.ijpharm.2005.03.031
Marote A. Santos D. Mendes-Pinheiro B. Serre-Miranda C. Anjo S.I. Vieira J. Ferreira-Antunes F. Correia J.S. Borges-Pereira C. Pinho A.G. et al. Cellular Aging Secretes: A Comparison of Bone-Marrow-Derived and Induced Mesenchymal Stem Cells and Their Secretome Over Long-Term Culture Stem Cell Rev. Rep. 2023 19 248 263 10.1007/s12015-022-10453-6 36152233
Reinhardt P. Glatza M. Hemmer K. Tsytsyura Y. Thiel C.S. Höing S. Moritz S. Parga J.A. Wagner L. Bruder J.M. et al. Derivation and Expansion Using Only Small Molecules of Human Neural Progenitors for Neurodegenerative Disease Modeling PLoS ONE 2013 8 e59252 10.1371/annotation/6a917a2e-df4a-4ad9-99bb-6aa7218b833e
Zagare A. Gobin M. Monzel A.S. Schwamborn J.C. A Robust Protocol for the Generation of Human Midbrain Organoids STAR Protoc. 2021 2 100524 10.1016/j.xpro.2021.100524 34027482
Hawkins P. Morton D.B. Burman O. Dennison N. Honess P. Jennings M. Lane S. Middleton V. Roughan V.J. Wells S. et al. A Guide to Defining and Implementing Protocols for the Welfare Assessment of Laboratory Animals: Eleventh Report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement Lab. Anim. 2011 45 1 13 10.1258/la.2010.010031
Mendes-Pinheiro B. Soares-Cunha C. Marote A. Loureiro-Campos E. Campos J. Barata-Antunes S. Monteiro-Fernandes D. Santos D. Duarte-Silva S. Pinto L. et al. Unilateral Intrastriatal 6-Hydroxydopamine Lesion in Mice: A Closer Look into Non-Motor Phenotype and Glial Response Int. J. Mol. Sci. 2021 22 11530 10.3390/ijms222111530
Mendes-Pinheiro B. Teixeira F.G. Anjo S.I. Manadas B. Behie L.A. Salgado A.J. Secretome of Undifferentiated Neural Progenitor Cells Induces Histological and Motor Improvements in a Rat Model of Parkinson’s Disease STEM CELLS Transl. Med. 2018 7 829 838 10.1002/sctm.18-0009
Kriegstein A. Alvarez-Buylla A. The Glial Nature of Embryonic and Adult Neural Stem Cells Annu. Rev. Neurosci. 2009 32 149 184 10.1146/annurev.neuro.051508.135600
Harada A. Teng J. Takei Y. Oguchi K. Hirokawa N. MAP2 Is Required for Dendrite Elongation, PKA Anchoring in Dendrites, and Proper PKA Signal Transduction J Cell Biol 2002 158 541 549 10.1083/jcb.200110134 12163474
Blandini F. Armentero M.T. Animal Models of Parkinson’s Disease FEBS J. 2012 279 1156 1166 10.1111/j.1742-4658.2012.08491.x 22251459
Stott S.R.W. Barker R.A. Time Course of Dopamine Neuron Loss and Glial Response in the 6-OHDA Striatal Mouse Model of Parkinson’s Disease Eur. J. Neurosci. 2014 39 1042 1056 10.1111/ejn.12459 24372914
Lancaster M.A. Knoblich J.A. Generation of Cerebral Organoids from Human Pluripotent Stem Cells Nat. Protoc. 2014 9 2329 2340 10.1038/nprot.2014.158
Lancaster M.A. Renner M. Martin C.-A. Wenzel D. Bicknell L.S. Hurles M.E. Homfray T. Penninger J.M. Jackson A.P. Knoblich J.A. Cerebral Organoids Model Human Brain Development and Microcephaly Nature 2013 501 373 379 10.1038/nature12517
Domingues A.V. Pereira I.M. Vilaça-Faria H. Salgado A.J. Rodrigues A.J. Teixeira F.G. Glial Cells in Parkinson’s Disease: Protective or Deleterious? Cell Mol. Life Sci. 2020 77 5171 5188 10.1007/s00018-020-03584-x
Ni A. Ernst C. Evidence That Substantia Nigra Pars Compacta Dopaminergic Neurons Are Selectively Vulnerable to Oxidative Stress Because They Are Highly Metabolically Active Front. Cell Neurosci. 2022 16 826193 10.3389/fncel.2022.826193
Brichta L. Greengard P. Molecular Determinants of Selective Dopaminergic Vulnerability in Parkinson’s Disease: An Update Front. Neuroanat. 2014 8 152 10.3389/fnana.2014.00152
Yang S.-A. Yoon J. Kim K. Park Y. Measurements of Morphological and Biophysical Alterations in Individual Neuron Cells Associated with Early Neurotoxic Effects in Parkinson’s Disease Cytom. Part A 2017 91 510 518 10.1002/cyto.a.23110
Jackson-Lewis V. Jakowec M. Burke R.E. Przedborski S. Time Course and Morphology of Dopaminergic Neuronal Death Caused by the Neurotoxin 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Neurodegeneration 1995 4 257 269 10.1016/1055-8330(95)90015-2
Healy-Stoffel M. Ahmad S.O. Stanford J.A. Levant B. Differential Effects of Intrastriatal 6-Hydroxydopamine on Cell Number and Morphology in Midbrain Dopaminergic Subregions of the Rat Brain Res. 2014 1574 113 119 10.1016/j.brainres.2014.05.045 24924804
Kim S.R. Chen X. Oo T.F. Kareva T. Yarygina O. Wang C. During M. Kholodilov N. Burke R.E. Dopaminergic Pathway Reconstruction by Akt/Rheb-Induced Axon Regeneration Ann. Neurol. 2011 70 110 120 10.1002/ana.22383 21437936
Tansey M.G. Wallings R.L. Houser M.C. Herrick M.K. Keating C.E. Joers V. Inflammation and Immune Dysfunction in Parkinson Disease Nat. Rev. Immunol. 2022 22 657 673 10.1038/s41577-022-00684-6 35246670
Sabate-Soler S. Nickels S.L. Saraiva C. Berger E. Dubonyte U. Barmpa K. Lan Y.J. Kouno T. Jarazo J. Robertson G. et al. Microglia Integration into Human Midbrain Organoids Leads to Increased Neuronal Maturation and Functionality Glia 2022 70 1267 1288 10.1002/glia.24167 35262217
Hong Y. Dong X. Chang L. Xie C. Chang M. Aguilar J.S. Lin J. Lin J. Li Q.Q. Microglia-Containing Cerebral Organoids Derived from Induced Pluripotent Stem Cells for the Study of Neurological Diseases iScience 2023 26 106267 10.1016/j.isci.2023.106267
Miura Y. Li M.-Y. Revah O. Yoon S.-J. Narazaki G. Pașca S.P. Engineering Brain Assembloids to Interrogate Human Neural Circuits Nat. Protoc. 2022 17 15 35 10.1038/s41596-021-00632-z
Reiner O. Sapir T. Parichha A. Using Multi-Organ Culture Systems to Study Parkinson’s Disease Mol. Psychiatry 2021 26 725 735 10.1038/s41380-020-00936-8
Teixeira F.G. Vilaça-Faria H. Domingues A.V. Campos J. Salgado A.J. Preclinical Comparison of Stem Cells Secretome and Levodopa Application in a 6-Hydroxydopamine Rat Model of Parkinson’s Disease Cells 2020 9 315 10.3390/cells9020315
Vilaça-Faria H. Marote A. Lages I. Ribeiro C. Mendes-Pinheiro B. Domingues A.V. Campos J. Lanceros-Mendez S. Salgado A.J. Teixeira F.G. Fractionating Stem Cells Secretome for Parkinson’s Disease Modeling: Is It the Whole Better than the Sum of Its Parts? Biochimie 2021 189 87 98 10.1016/j.biochi.2021.06.008
Duty S. Jenner P. Animal Models of Parkinson’s Disease: A Source of Novel Treatments and Clues to the Cause of the Disease Br. J. Pharmacol. 2011 164 1357 1391 10.1111/j.1476-5381.2011.01426.x
Carvalho M.M. Campos F.L. Coimbra B. Pêgo J.M. Rodrigues C. Lima R. Rodrigues A.J. Sousa N. Salgado A.J. Behavioral Characterization of the 6-Hydroxidopamine Model of Parkinson’s Disease and Pharmacological Rescuing of Non-Motor Deficits Mol. Neurodegener. 2013 8 14 10.1186/1750-1326-8-14 23621954
Muralikrishnan D. Mohanakumar K.P. Neuroprotection by Bromocriptine against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurotoxicity in Mice1 FASEB J. 1998 12 905 912 10.1096/fasebj.12.10.905 9657530
Haobam R. Sindhu K.M. Chandra G. Mohanakumar K.P. Swim-Test as a Function of Motor Impairment in MPTP Model of Parkinson’s Disease: A Comparative Study in Two Mouse Strains Behav. Brain Res. 2005 163 159 167 10.1016/j.bbr.2005.04.011 15941598
Li Q. Wang Z. Xing H. Wang Y. Guo Y. Exosomes Derived from miR-188-3p-Modified Adipose-Derived Mesenchymal Stem Cells Protect Parkinson’s Disease Mol. Ther. Nucleic Acids 2021 23 1334 1344 10.1016/j.omtn.2021.01.022
Sun Z. Gu P. Xu H. Zhao W. Zhou Y. Zhou L. Zhang Z. Wang W. Han R. Chai X. et al. Human Umbilical Cord Mesenchymal Stem Cells Improve Locomotor Function in Parkinson’s Disease Mouse Model Through Regulating Intestinal Microorganisms Front. Cell Dev. Biol. 2021 9 808905 10.3389/fcell.2021.808905
Yildirim S. Oylumlu E. Ozkan A. Sinen O. Bulbul M. Goksu E.T. Ertosun M.G. Tanriover G. Zinc (Zn) and Adipose-Derived Mesenchymal Stem Cells (AD-MSCs) on MPTP-Induced Parkinson’s Disease Model: A Comparative Evaluation of Behavioral and Immunohistochemical Results NeuroToxicology 2023 97 1 11 10.1016/j.neuro.2023.05.002
Hortobagyi T. Beam Walking to Assess Dynamic Balance in Health and Disease: A Protocol for the “BEAM” Multi-Center Observational Study Available online: https://clinicaltrials.gov/ (accessed on 8 August 2023)
Kirik D. Rosenblad C. Björklund A. Characterization of Behavioral and Neurodegenerative Changes Following Partial Lesions of the Nigrostriatal Dopamine System Induced by Intrastriatal 6-Hydroxydopamine in the Rat Exp. Neurol. 1998 152 259 277 10.1006/exnr.1998.6848
Alvarez-Fischer D. Henze C. Strenzke C. Westrich J. Ferger B. Höglinger G.U. Oertel W.H. Hartmann A. Characterization of the Striatal 6-OHDA Model of Parkinson’s Disease in Wild Type and α-Synuclein-Deleted Mice Exp. Neurol. 2008 210 182 193 10.1016/j.expneurol.2007.10.012
Pires A.O. Mendes-Pinheiro B. Teixeira F.G. Anjo S.I. Ribeiro-Samy S. Gomes E.D. Serra S.C. Silva N.A. Manadas B. Sousa N. et al. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis Stem Cells Dev. 2016 25 1073 1083 10.1089/scd.2016.0048
Marques C.R. Pereira-Sousa J. Teixeira F.G. Sousa R.A. Teixeira-Castro A. Salgado A.J. Mesenchymal Stem Cell Secretome Protects against Alpha-Synuclein-Induced Neurodegeneration in a Caenorhabditis Elegans Model of Parkinson’s Disease Cytotherapy 2021 10 894 901 10.1016/j.jcyt.2021.04.002
Marques C.R. Fuzeta M. de A.; dos Santos Cunha, R.M.; Pereira-Sousa, J.; Silva, D.; Campos, J.; Teixeira-Castro, A.; Sousa, R.A.; Fernandes-Platzgummer, A.; da Silva, C.L.; et al. Neurodifferentiation and Neuroprotection Potential of Mesenchymal Stromal Cell-Derived Secretome Produced in Different Dynamic Systems Biomedicines 2023 11 1240 10.3390/biomedicines11051240
Lev N. Barhum Y. Ben-Zur T. Melamed E. Steiner I. Offen D. Knocking out DJ-1 Attenuates Astrocytes Neuroprotection against 6-Hydroxydopamine Toxicity J. Mol. Neurosci. 2013 50 542 550 10.1007/s12031-013-9984-9 23536331
Oh S.H. Kim H.N. Park H.J. Shin J.Y. Kim D.Y. Lee P.H. The Cleavage Effect of Mesenchymal Stem Cell and Its Derived Matrix Metalloproteinase-2 on Extracellular α-Synuclein Aggregates in Parkinsonian Models STEM CELLS Transl. Med. 2017 6 949 961 10.5966/sctm.2016-0111 28297586
Imai Y. Kobayashi Y. Inoshita T. Meng H. Arano T. Uemura K. Asano T. Yoshimi K. Zhang C.-L. Matsumoto G. et al. The Parkinson’s Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway PLoS Genet 2015 11 e1005503 10.1371/journal.pgen.1005503 26355680
Desplats P. Spencer B. Crews L. Pathel P. Morvinski-Friedmann D. Kosberg K. Roberts S. Patrick C. Winner B. Winkler J. et al. α-Synuclein Induces Alterations in Adult Neurogenesis in Parkinson Disease Models via P53-Mediated Repression of Notch1 J. Biol. Chem. 2012 287 31691 31702 10.1074/jbc.M112.354522 22833673
Marote A. Teixeira F.G. Mendes-Pinheiro B. Salgado A.J. MSCs-Derived Exosomes: Cell-Secreted Nanovesicles with Regenerative Potential Front. Pharmacol. 2016 7 231 10.3389/fphar.2016.00231
Di Santo S. Seiler S. Ducray A.D. Widmer H.R. Conditioned Medium from Endothelial Progenitor Cells Promotes Number of Dopaminergic Neurons and Exerts Neuroprotection in Cultured Ventral Mesencephalic Neuronal Progenitor Cells Brain Res. 2019 1720 146330 10.1016/j.brainres.2019.146330
Ni W. Zhou J. Ling Y. Lu X. Niu D. Zeng Y. Qiu Y. Si Y. Wang J. Zhang W. et al. Neural Stem Cell Secretome Exerts a Protective Effect on Damaged Neuron Mitochondria in Parkinson’s Disease Model Brain Res. 2022 1790 147978 10.1016/j.brainres.2022.147978
Monzel A.S. Hemmer K. Kaoma T. Smits L.M. Bolognin S. Lucarelli P. Rosety I. Zagare A. Antony P. Nickels S.L. et al. Machine Learning-Assisted Neurotoxicity Prediction in Human Midbrain Organoids Park. Relat. Disord. 2020 75 105 109 10.1016/j.parkreldis.2020.05.011