Humans; Astrocytes/metabolism; Brain/metabolism; Energy Metabolism; Alzheimer Disease/metabolism; Alzheimer; Disease progression; Homoeostasis; Mechanistics; Metabolic function; Molecular changes; Morphological changes; Morphology changes; Multiscale modeling; Alzheimer Disease; Astrocytes; Brain; Modeling and Simulation; Molecular Biology; Cellular and Molecular Neuroscience; Computational Theory and Mathematics
Abstract :
[en] Astrocytes with their specialised morphology are essential for brain homeostasis as metabolic mediators between blood vessels and neurons. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes adopt reactive profiles with molecular and morphological changes that could lead to the impairment of their metabolic support and impact disease progression. However, the underlying mechanisms of how the metabolic function of human astrocytes is impaired by their morphological changes in AD are still elusive. To address this challenge, we developed and applied a metabolic multiscale modelling approach integrating the dynamics of metabolic energy pathways and physiological astrocyte morphologies acquired in human AD and age-matched control brain samples. The results demonstrate that the complex cell shape and intracellular organisation of energetic pathways determine the metabolic profile and support capacity of astrocytes in health and AD conditions. Thus, our mechanistic approach indicates the importance of spatial orchestration in metabolism and allows for the identification of protective mechanisms against disease-associated metabolic impairments.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
FARINA, Sofia ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Engineering > Team Stéphane BORDAS
VOORSLUIJS, Valerie ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Integrative Cell Signalling
FIXEMER, Sonja ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Integrative Cell Signalling > Team Alexander SKUPIN ; Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
BOUVIER, David ; University of Luxembourg ; Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg ; Laboratoire national de santé (LNS), National Center of Pathology (NCP), Dudelange, Luxembourg
Claus, Susanne; Onera, Palaiseau, France
Ellisman, Mark H; Department of Neurosciences, University of California San Diego, California, United States of America
BORDAS, Stéphane ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
SKUPIN, Alexander ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Integrative Cell Signalling ; Department of Neurosciences, University of California San Diego, California, United States of America
External co-authors :
yes
Language :
English
Title :
Mechanistic multiscale modelling of energy metabolism in human astrocytes reveals the impact of morphology changes in Alzheimer's Disease.
S Farina and S Fixemer were supported by the PRIDE program of the Luxembourg National Research Found through the grants PRIDE17/12252781/DRIVEN and PRIDE17/12244779/PARK-QC, respectively. ME obtained support through NIH NINDS (1U24NS120055-01) and NIGMS (R24 GM137200). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No author received direct salary from any funder.
Laughlin SB, de Ruyter van Steveninck RR, Anderson JC. The metabolic cost of neural information. Nature neuroscience. 1998; 1(1):36–41. https://doi.org/10.1038/236 PMID: 10195106
Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences. 1994; 91(22):10625–10629. https://doi.org/10.1073/pnas.91.22.10625 PMID: 7938003
Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell metabolism. 2011; 14(6):724–738. https://doi.org/10.1016/j.cmet.2011.08.016 PMID: 22152301
Patel AB, Lai JC, Chowdhury GM, Hyder F, Rothman DL, Shulman RG, et al. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proceedings of the National Academy of Sciences. 2014; 111(14):5385–5390. https://doi.org/10.1073/pnas.1403576111 PMID: 24706914
Patsatzis DG, Tingas EA, Goussis DA, Sarathy SM. Computational singular perturbation analysis of brain lactate metabolism. PloS one. 2019; 14(12):e0226094. https://doi.org/10.1371/journal.pone. 0226094 PMID: 31846455
Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nature neuroscience. 2021; 24(3):312–325. https://doi.org/10.1038/s41593-020-00783-4 PMID: 33589835
Bouvier DS, Fixemer S, Heurtaux T, Jeannelle F, Frauenknecht K, Mittelbronn M. The Multifaceted Neurotoxicity of Astrocytes in Ageing and Age-Related Neurodegenerative Diseases: A Translational Perspective. Frontiers in Physiology. 2022; p. 467. https://doi.org/10.3389/fphys.2022.814889 PMID: 35370777
Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiological reviews. 2014; 94(4):1077–1098. https://doi.org/10.1152/physrev.00041.2013 PMID: 25287860
Bouvier DS, Jones EV, Quesseveur G, Davoli MA, A Ferreira T, Quirion R, et al. High resolution dissection of reactive glial nets in Alzheimer’s disease. Scientific reports. 2016; 6(1):1–15. https://doi.org/10.1038/srep24544 PMID: 27090093
Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Terada M, et al. Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proceedings of the National Academy of Sciences. 2006; 103(46):17513–17518. https://doi.org/10.1073/pnas. 0602841103
Acaz-Fonseca E, Ortiz-Rodriguez A, Azcoitia I, Garcia-Segura LM, Arevalo MA. Notch signaling in astrocytes mediates their morphological response to an inflammatory challenge. Cell death discovery. 2019; 5(1):85. https://doi.org/10.1038/s41420-019-0166-6
Bigl M, Brückner M, Arendt T, Bigl V, Eschrich K. Activities of key glycolytic enzymes in the brains of patients with Alzheimer’s disease. Journal of neural transmission. 1999; 106(5):499–511. https://doi.org/10.1007/s007020050174 PMID: 10443553
Camandola S, Mattson MP. Brain metabolism in health, aging, and neurodegeneration. The EMBO journal. 2017; 36(11):1474–1492. https://doi.org/10.15252/embj.201695810 PMID: 28438892
Arranz AM, De Strooper B. The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. The Lancet Neurology. 2019. https://doi.org/10.1016/S1474-4422(18)30490-3 PMID: 30795987
Cotto B, Natarajaseenivasan K, Langford D. Astrocyte activation and altered metabolism in normal aging, age-related CNS diseases, and HAND. Journal of neurovirology. 2019; 25(5):722–733. https://doi.org/10.1007/s13365-019-00721-6 PMID: 30671779
Zulfiqar S, Garg P, Nieweg K. Contribution of astrocytes to metabolic dysfunction in the Alzheimer’s disease brain. Biological chemistry. 2019; 400(9):1113–1127. https://doi.org/10.1515/hsz-2019-0140 PMID: 31188740
Schurr A, West CA, Rigor BM. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science. 1988; 240(4857):1326–1328. https://doi.org/10.1126/science.3375817 PMID: 3375817
Tantama M, Yellen G. Imaging changes in the cytosolic ATP-to-ADP ratio. In: Methods in enzymology. vol. 547. Elsevier; 2014. p. 355–371.
Tantama M, Martínez-François JR, Mongeon R, Yellen G. Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nature communications. 2013; 4(1):1–11. https://doi.org/10.1038/ncomms3550 PMID: 24096541
Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nature Reviews Neuroscience. 2018; 19(4):235–249. https://doi.org/10.1038/nrn.2018.19 PMID: 29515192
Martín-Jiménez CA, Salazar-Barreto D, Barreto GE, González J. Genome-scale reconstruction of the human astrocyte metabolic network. Frontiers in aging neuroscience. 2017; 9:23. https://doi.org/10.3389/fnagi.2017.00023 PMID: 28243200
Berndt N, Bulik S, Holzhütter HG. Kinetic modeling of the mitochondrial energy metabolism of neuronal cells: the impact of reduced-ketoglutarate dehydrogenase activities on ATP production and generation of reactive oxygen species. International journal of cell biology. 2012; 2012. https://doi.org/10.1155/2012/757594 PMID: 22719765
Çakιr T, Alsan S, Saybaşιlι H, Akιn A, Ülgen KÖ. Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia. Theoretical Biology and Medical Modelling. 2007; 4(1):48. https://doi.org/10.1186/1742-4682-4-48
Cloutier M, Bolger FB, Lowry JP, Wellstead P. An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements. Journal of computational neuroscience. 2009; 27 (3):391. https://doi.org/10.1007/s10827-009-0152-8 PMID: 19396534
Sertbaş M, Ülgen K, Çakır T. Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network. FEBS Open Bio. 2014; 4:542–553. https://doi.org/10.1016/j.fob.2014.05.006 PMID: 25061554
Jolivet R, Coggan JS, Allaman I, Magistretti PJ. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS computational biology. 2015; 11(2): e1004036. https://doi.org/10.1371/journal.pcbi.1004036 PMID: 25719367
Coggan JS, Keller D, Calì C, Lehväslaiho H, Markram H, Schürmann F, et al. Norepinephrine stimulates glycogenolysis in astrocytes to fuel neurons with lactate. PLoS computational biology. 2018; 14(8): e1006392. https://doi.org/10.1371/journal.pcbi.1006392 PMID: 30161133
Sánchez-Alvarez R, Tabernero A, Medina JM. Endothelin-1 stimulates the translocation and upregulation of both glucose transporter and hexokinase in astrocytes: relationship with gap junctional communication. Journal of neurochemistry. 2004; 89(3):703–714. https://doi.org/10.1046/j.1471-4159.2004.02398.x PMID: 15086527
Jackson JG, Robinson MB. Regulation of mitochondrial dynamics in astrocytes: Mechanisms, consequences, and unknowns. Glia. 2018; 66(6):1213–1234. https://doi.org/10.1002/glia.23252 PMID: 29098734
Quesseveur G, d’Hérouël AF, Murai KK, Bouvier DS. A specialized method to resolve fine 3D features of astrocytes in nonhuman primate (marmoset, Callithrix jacchus) and human fixed brain samples. In: Benedetto BD, editor. Astrocytes. Regensburg, Germany: Springer; 2019. p. 85–95.
Bushong EA, Martone ME, Jones YZ, Ellisman MH. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. Journal of Neuroscience. 2002; 22(1):183–192. https://doi.org/10.1523/JNEUROSCI.22-01-00183.2002 PMID: 11756501
Farina S, Claus S, Hale JS, Skupin A, Bordas SP. A cut finite element method for spatially resolved energy metabolism models in complex neuro-cell morphologies with minimal remeshing. Advanced Modeling and Simulation in Engineering Sciences. 2021; 8(1):1–32. https://doi.org/10.1186/s40323-021-00191-8
Burman E, Claus S, Hansbo P, Larson MG, Massing A. CutFEM: discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering. 2015; 104(7):472–501. https://doi.org/10.1002/nme.4823
Claus S, Bigot S, Kerfriden P. CutFEM Method for Stefan–Signorini Problems with Application in Pulsed Laser Ablation. SIAM Journal on Scientific Computing. 2018; 40(5):B1444–B1469. https://doi.org/10.1137/18M1185697
Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, et al. Uniquely hominid features of adult human astrocytes. Journal of Neuroscience. 2009; 29(10):3276–3287. https://doi.org/10.1523/JNEUROSCI.4707-08.2009 PMID: 19279265
Winkler U, Seim P, Enzbrenner Y, Köhler S, Sicker M, Hirrlinger J. Activity-dependent modulation of intracellular ATP in cultured cortical astrocytes. Journal of neuroscience research. 2017; 95(11):2172–2181. https://doi.org/10.1002/jnr.24020 PMID: 28151554
Stein WD, Litman T. Channels, carriers, and pumps: an introduction to membrane transport. Elsevier; 2014.
Saks V, Kuznetsov A, Andrienko T, Usson Y, Appaix F, Guerrero K, et al. Heterogeneity of ADP diffusion and regulation of respiration in cardiac cells. Biophysical Journal. 2003; 84(5):3436–3456. https://doi.org/10.1016/S0006-3495(03)70065-4 PMID: 12719270
Polson A. The Some Aspects of Diffusion in Solution and a Definition of a Colloidal Particle. The Journal of Physical Chemistry. 1950; 54(5):649–652. https://doi.org/10.1021/j150479a007
Tyn MT, Gusek TW. Prediction of diffusion coefficients of proteins. Biotechnology and bioengineering. 1990; 35(4):327–338. https://doi.org/10.1002/bit.260350402 PMID: 18592527
John S, Weiss JN, Ribalet B. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PloS one. 2011; 6(3):e17674. https://doi.org/10.1371/journal.pone.0017674 PMID: 21408025
Lynch RM, Fogarty KE, Fay FS. Modulation of hexokinase association with mitochondria analyzed with quantitative three-dimensional confocal microscopy. The Journal of cell biology. 1991; 112(3):385–395. https://doi.org/10.1083/jcb.112.3.385 PMID: 1991789
Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG. Synaptic islands defined by the territory of a single astrocyte. Journal of Neuroscience. 2007; 27(24):6473–6477. https://doi.org/10.1523/JNEUROSCI.1419-07.2007 PMID: 17567808
Bergersen LH. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body—Brain interaction. Journal of Cerebral Blood Flow & Metabolism. 2015; 35(2):176–185. https://doi.org/10.1038/jcbfm.2014.206 PMID: 25425080
Mulica P, Grünewald A, Pereira SL. Astrocyte-Neuron Metabolic Crosstalk in Neurodegeneration: A Mitochondrial Perspective. Frontiers in Endocrinology. 2021; 12. https://doi.org/10.3389/fendo.2021. 668517 PMID: 34025580
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006; 443(7113):787–795. https://doi.org/10.1038/nature05292 PMID: 17051205
Motori E, Puyal J, Toni N, Ghanem A, Angeloni C, Malaguti M, et al. Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance. Cell metabolism. 2013; 18(6):844–859. https://doi.org/10.1016/j.cmet.2013.11.005 PMID: 24315370
Picone P, Nuzzo D, Caruana L, Scafidi V, Di Carlo M. Mitochondrial dysfunction: different routes to Alzheimer’s disease therapy. Oxidative medicine and cellular longevity. 2014; 2014. https://doi.org/10.1155/2014/780179 PMID: 25221640
Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015; 86(4):883–901. https://doi.org/10.1016/j.neuron.2015.03.035 PMID: 25996133
Liu YJ, McIntyre RL, Janssens GE, Houtkooper RH. Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease. Mechanisms of ageing and development. 2020; 186:111212. https://doi.org/10.1016/j.mad.2020.111212 PMID: 32017944
Patrick KL, Bell SL, Weindel CG, Watson RO. Exploring the “multiple-hit hypothesis” of neurodegenerative disease: bacterial infection comes up to bat. Frontiers in Cellular and Infection Microbiology. 2019; 9:138. https://doi.org/10.3389/fcimb.2019.00138 PMID: 31192157
Zhu X, Lee Hg, Perry G, Smith MA. Alzheimer disease, the two-hit hypothesis: an update. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2007; 1772(4):494–502. https://doi.org/10.1016/j.bbadis.2006.10.014 PMID: 17142016
Kim EY, Chung TW, Han CW, Park SY, Park KH, Jang SB, et al. A novel lactate dehydrogenase inhibitor, 1-(phenylseleno)-4-(trifluoromethyl) benzene, suppresses tumor growth through apoptotic cell death. Scientific reports. 2019; 9(1):1–12. https://doi.org/10.1038/s41598-019-40617-3 PMID: 30850682
Granchi C, Bertini S, Macchia M, Minutolo F. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Current medicinal chemistry. 2010; 17(7):672–697. https://doi.org/10.2174/ 092986710790416263 PMID: 20088761
Garcia GC, Bartol TM, Phan S, Bushong EA, Perkins G, Sejnowski TJ, et al. Mitochondrial morphology provides a mechanism for energy buffering at synapses. Scientific reports. 2019; 9(1):1–12. https://doi.org/10.1038/s41598-019-54159-1 PMID: 31797946
Lee JM, Gianchandani EP, Papin JA. Flux balance analysis in the era of metabolomics. Briefings in bioinformatics. 2006; 7(2):140–150.
Raman K, Chandra N. Flux balance analysis of biological systems: applications and challenges. Briefings in bioinformatics. 2009; 10(4):435–449. https://doi.org/10.1093/bib/bbp011 PMID: 19287049
Aubert A, Costalat R. Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. Journal of Cerebral Blood Flow & Metabolism. 2005; 25 (11):1476–1490. https://doi.org/10.1038/sj.jcbfm.9600144 PMID: 15931164
Aubert A, Costalat R, Magistretti PJ, Pellerin L. Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation. Proceedings of the National Academy of Sciences. 2005; 102 (45):16448–16453. https://doi.org/10.1073/pnas.0505427102 PMID: 16260743
Jolivet R, Magistretti PJ, Weber B. Deciphering neuron-glia compartmentalization in cortical energy metabolism. Frontiers in neuroenergetics. 2009; 1:4. https://doi.org/10.3389/neuro.14.004.2009 PMID: 19636395
Khalid MU, Tervonen A, Korkka I, Hyttinen J, Lenk K. Geometry-based computational modeling of calcium signaling in an astrocyte. In: Eskola H, Väisänen O, Viik J, Hyttinen J, editors. EMBEC & NBC 2017. Singapore: Springer Singapore; 2017. p. 157–160.
Denizot A, Arizono M, Nägerl UV, Soula H, Berry H. Simulation of calcium signaling in fine astrocytic processes: Effect of spatial properties on spontaneous activity. PLoS computational biology. 2019; 15 (8):e1006795. https://doi.org/10.1371/journal.pcbi.1006795 PMID: 31425510
Verisokin AY, Verveyko DV, Postnov DE, Brazhe AR. Modeling of astrocyte networks: toward realistic topology and dynamics. Frontiers in Cellular Neuroscience. 2021; 15:645068. https://doi.org/10.3389/fncel.2021.645068 PMID: 33746715
Maldonado EN, Lemasters JJ. ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect. Mitochondrion. 2014; 19:78–84. https://doi.org/10.1016/j.mito.2014.09.002 PMID: 25229666
Hashimoto T, Masuda S, Taguchi S, Brooks GA. Immunohistochemical analysis of MCT1, MCT2 and MCT4 expression in rat plantaris muscle. The Journal of physiology. 2005; 567(1):121–129. https://doi.org/10.1113/jphysiol.2005.087411 PMID: 15932892
Calì C, Agus M, Kare K, Boges DJ, Lehväslaiho H, Hadwiger M, et al. 3D cellular reconstruction of cortical glia and parenchymal morphometric analysis from Serial Block-Face Electron Microscopy of juvenile rat. Progress in neurobiology. 2019; 183:101696. https://doi.org/10.1016/j.pneurobio.2019.101696 PMID: 31550514
Bordas S, Bucki M, Chouly F, Duprez M, Lleras V, Lobos C, et al. Quantifying discretization errors for soft-tissue simulation in computer assisted surgery: a preliminary study. 2017;.
Bui HP, Tomar S, Courtecuisse H, Cotin S, Bordas SP. Real-time error control for surgical simulation. IEEE Transactions on Biomedical Engineering. 2017; 65(3):596–607. https://doi.org/10.1109/TBME.2017.2695587 PMID: 28541192
Duprez M, Bordas S, Bucki M, Bui HP, Chouly F, Lleras V, et al. Quantifying discretization errors for soft-tissue simulation in computer assisted surgery: a preliminary study. arXiv preprint arXiv:180606944. 2018.
Bui HP, Tomar S, Courtecuisse H, Audette M, Cotin S, Bordas SP. Controlling the error on target motion through real-time mesh adaptation: Applications to deep brain stimulation. International journal for numerical methods in biomedical engineering. 2018; 34(5):e2958. https://doi.org/10.1002/cnm.2958 PMID: 29314783
Hauseux P, Hale JS, Cotin S, Bordas SP. Quantifying the uncertainty in a hyperelastic soft tissue model with stochastic parameters. Applied Mathematical Modelling. 2018; 62:86–102. https://doi.org/10.1016/j.apm.2018.04.021
Rappel H, Beex L. Estimating fibres’ material parameter distributions from limited data with the help of Bayesian inference. European Journal of Mechanics-A/Solids. 2019; 75:169–196. https://doi.org/10.1016/j.euromechsol.2019.01.001
Goebel J, Engelhardt E, Pelzer P, Sakthivelu V, Jahn HM, Jevtic M, et al. Mitochondria-ER contacts in reactive astrocytes coordinate local perivascular domains to promote vascular remodelling. bioRxiv. 2020; p. 657999.
Salmon CK, Syed TA, Kacerovsky JB, Alivodej N, Schober AL, Pratte MT, et al. Organizing Principles of Astrocytic Nanoarchitecture in the Mouse Cerebral Cortex. bioRxiv. 2021;.
Siegmund SE, Grassucci R, Carter SD, Barca E, Farino ZJ, Juanola-Falgarona M, et al. Three-dimensional analysis of mitochondrial crista ultrastructure in a patient with Leigh syndrome by in situ cryoelectron tomography. Iscience. 2018; 6:83–91. https://doi.org/10.1016/j.isci.2018.07.014 PMID: 30240627
Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. Journal of Pharmacology and Experimental Therapeutics. 2012; 342(3):619–630. https://doi.org/10.1124/jpet.112.192138 PMID: 22700435
Soman S, Keatinge M, Moein M, Da Costa M, Mortiboys H, Skupin A, et al. Inhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in pink1-/- zebrafish. European Journal of Neuroscience. 2017; 45(4):528–535. https://doi.org/10.1111/ejn.13473 PMID: 27859782
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nature Reviews Neuroscience. 2018; 19(2):63–80. https://doi.org/10.1038/nrn.2017.170 PMID: 29348666
Murray JD. Mathematical biology: I. An introduction. vol. 17. Springer Science & Business Media; 2007.
Waage P, Gulberg CM. Studies concerning affinity. Journal of chemical education. 1986; 63(12):1044. https://doi.org/10.1021/ed063p1044
Claus S, Kerfriden P, Moshfeghifar F, Darkner S, Erleben K, Wong C. Contact modeling from images using cut finite element solvers. Advanced Modeling and Simulation in Engineering Sciences. 2021; 8 (1):1–23. https://doi.org/10.1186/s40323-021-00197-2
Brenner S, Scott R. The Mathematical Theory of Finite Element Methods. 3rd ed. Texts in Applied Mathematics. New York: Springer-Verlag; 2008. Available from: https://www.springer.com/gp/book/ 9780387759333.
Quarteroni A, Valli A. Numerical approximation of partial differential equations. Heidelberg: Springer Science & Business Media; 2008.
Hughes TJ. The finite element method: linear static and dynamic finite element analysis. Courier Corporation; 2012.
Bordas S, Menk A. Xfem: The Extended Finite Element Method. John Wiley; 2014.
Logg A, Mardal KA, Wells G. Automated solution of differential equations by the finite element method: The FEniCS book. Heidelberg: Springer Science & Business Media; 2012.
Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, et al. The FEniCS project version 1.5. Archive of Numerical Software. 2015; 3(100):9–23.