Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Timely Identification of Victim Addresses in DeFi Attacks
PARHIZKARI, Bahareh; IANNILLO, Antonio Ken; FERREIRA TORRES, Christof et al.
2023In Timely Identification of Victim Addresses in DeFi Attacks
Peer reviewed
 

Documents


Texte intégral
Identifying_Victims_in_DeFi_Attacks.pdf
Postprint Auteur (412.64 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Ethereum; Smart Contracts; DeFi; Victims; Attacks
Résumé :
[en] Over the past years, Decentralized Finance (DeFi) protocols have suffered from several attacks. As a result, multiple solutions have been proposed to prevent such attacks. Most solutions rely on identifying malicious transactions before they are included in blocks. However, with the emergence of private pools, attackers can now conceal their exploit transactions from attack detection. This poses a significant challenge for existing security tools, which primarily rely on monitoring transactions in public mempools. To effectively address this challenge, it is crucial to develop proactive methods that predict malicious behavior before the actual attack transactions occur. In this work, we introduce a novel methodology to infer potential victims by analyzing the deployment bytecode of malicious smart contracts. Our idea leverages the fact that attackers typically split their attacks into two stages, a deployment stage, and an attack stage. This provides a small window to analyze the attacker's deployment code and identify victims in a timely manner before the actual attack occurs. By analyzing a set of past DeFi attacks, this work demonstrates that the victim of an attack transaction can be identified with an accuracy of almost 70%.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SEDAN - Service and Data Management in Distributed Systems
Disciplines :
Sciences informatiques
Auteur, co-auteur :
PARHIZKARI, Bahareh  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
IANNILLO, Antonio Ken  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
FERREIRA TORRES, Christof ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SEDAN > Team Radu STATE ; ETH Zurich
Banescu, Sebastian;  Quantstamp, Inc
Xu, Joseph;  Quantstamp, Inc
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Timely Identification of Victim Addresses in DeFi Attacks
Date de publication/diffusion :
septembre 2023
Nom de la manifestation :
International Workshop on Cryptocurrencies and Blockchain Technology (CBT)
Date de la manifestation :
2023
Titre de l'ouvrage principal :
Timely Identification of Victim Addresses in DeFi Attacks
Maison d'édition :
Springer
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Objectif de développement durable (ODD) :
9. Industrie, innovation et infrastructure
Disponible sur ORBilu :
depuis le 23 décembre 2023

Statistiques


Nombre de vues
232 (dont 41 Unilu)
Nombre de téléchargements
253 (dont 13 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1
citations OpenAlex
 
5

Bibliographie


Publications similaires



Contacter ORBilu