Timely Identification of Victim Addresses in
DeFi Attacks

Bahareh Parhizkari! [0009—-0006-3819=7939] " Aptonio Ken
0000—0001—9358—7100 : : 2[0000—0001—6992—703X
[° I, Christof Ferreira Torres?!]

3[0000—0003—0771—4826] JOSGph Xu3 [0000—0001—8831—4298]
)
Radu Statel [0000—0002—4751—9577]

Tannillo?

b)
Sebastian Banescu , and

L SnT, University of Luxembourg
2 ETH Zurich
3 Quantstamp, Inc

Abstract. Over the past years, Decentralized Finance (DeFi) protocols
have suffered from several attacks. As a result, multiple solutions have
been proposed to prevent such attacks. Most solutions rely on identi-
fying malicious transactions before they are included in blocks. How-
ever, with the emergence of private pools, attackers can now conceal
their exploit transactions from attack detection. This poses a significant
challenge for existing security tools, which primarily rely on monitoring
transactions in public mempools. To effectively address this challenge, it
is crucial to develop proactive methods that predict malicious behavior
before the actual attack transactions occur. In this work, we introduce
a novel methodology to infer potential victims by analyzing the deploy-
ment bytecode of malicious smart contracts. Our idea leverages the fact
that attackers typically split their attacks into two stages, a deployment
stage, and an attack stage. This provides a small window to analyze the
attacker’s deployment code and identify victims in a timely manner be-
fore the actual attack occurs. By analyzing a set of past DeFi attacks,
this work demonstrates that the victim of an attack transaction can be
identified with an accuracy of almost 70%.

Keywords: Ethereum - Smart Contracts - DeFi - Victims - Attacks.

1 Introduction

Blockchain and smart contract-based financial systems and applications, com-
monly called Decentralized Finance (DeFi) protocols, have made remarkable
progress in capturing usage and attracting investments, resulting in exponential
growth in the amount of capital staked within them. A persistent problem in
these financial systems is the loss of funds through the unintended use of smart
contracts. These are often referred to as hacks and exploits.

Companies providing DeFi services employ various strategies to protect their
products against hacks. These encompass a range of approaches, such as develop-
ing secure development practices, conducting security audits, and bug bounties.

2 B. Parhizkari et al.

However, it is crucial to note that despite utilizing these methods, achieving
100% security cannot be guaranteed. They must acquire information about on-
going security incidents as soon as possible to ensure they can take appropriate
actions, such as pausing the protocols to limit the damage before significant
financial damage occurs.

Numerous studies focus on designing tools to detect attacks on smart con-
tracts by monitoring transactions on the public mempool and avoiding suspicious
transactions from being recorded on the ledger [12,14,18,29,30,35]. However,
these defensive methods become useless when attacker execute their transac-
tions via private pools. It could impede companies from reacting against attacks
promptly, particularly during the execution phase.

An essential aspect of DeF1i security is detecting exploits while they are hap-
pening or before they happen (i.e., prevention). Typical exploits generally involve
the following steps: deployment of malicious contracts, attack execution, and
funds extraction. In a recent attack on Euler Finance[1], hackers utilized private
pools to drain $197 million. However, they deployed the malicious smart contract
a few blocks prior to initiating the attack transaction, providing a crucial win-
dow for intervention and prevention. Another instance is the attack on the Rubic
exchange|7], resulting in a $1.4 million loss. During this incident, attackers de-
ployed a malicious contract and promptly executed the attack transaction after
deploying it via private pools. However, prevention could be achieved since the
attack transaction occurred one block after the contract creation transaction. In
such situations, the most viable option is detecting attack characteristics during
the rescue time window between creating a malicious smart contract and the
execution of the first exploit transaction. This can be achieved by analyzing the
features of newly created smart contracts to distinguish malicious smart con-
tracts from benign ones. For example, Forta recently introduced an ML bot [17]
that utilizes machine learning prediction models to analyze the deployment byte-
code (i.e., binary code sent to the network for the creation of a smart contract)
of newly created smart contracts. Nevertheless, an important aspect is still lack-
ing: when an ongoing attack is detected, what actions can we take to prevent the
attacker from further exploiting the victim? This involves a combination of the
following steps: 1) stopping the execution of malicious transactions, 2) detect-
ing and informing the victim of the attack, and promptly notifying them about
the ongoing attack. This enables the victim to take remedial actions, including
identifying and fixing the exploited vulnerabilities. While Forta’s ML bot [17]
provides alerts on potential attacks, it does not offer an approach to identify the
victims of the attacks.

In this work, we aim to address this limitation by proposing a solution that
automates the identification of targeted addresses by analyzing malicious smart
contracts deployed by attackers. We aim to quantify the percentage of victims
that could be identified and alerted before an attack occurs, allowing for proac-
tive intervention to minimize the hack’s impact. In both previously explained
attacks on Euler Finance and Robic Exchange, the victim’s address was hard-
coded inside the deployment bytecode of the malicious contract. Therefore, the

Timely Identification of Victim Addresses in DeFi Attacks 3

victim could be identified prior to the attack transaction. Through exploring
117 attacks across four chains, we discovered that in almost 80% of cases, the
victim’s address emerged before the first attack transaction. Nevertheless, nu-
merous attack contracts contain a large number of potential victims to consider.
In this research, our goal is to overcome the limitations of existing attack detec-
tion methodologies on DeFi by solving the victim identification problem. The
contributions of this paper are the following:

1. We investigate the usage of private pools for malicious purposes in the DeFi
ecosystem.

2. We propose a novel methodology to identify victims before being exploited
by malicious contracts.

3. We evaluate and compare two methods used to extract the victims’ addresses
from the set of potential victims of a malicious contract.

The paper is organized as follows. Section 2 provides information on smart
contracts, including their bytecode and an explanation of private and public
transaction pools. Section 3 discusses our motivations for performing this re-
search and examines the current trend of utilizing private pools for malicious
purposes. Section 4 outlines our methodology and algorithms. Section 5 presents
the evaluation of our results. In Section 6, we compare our findings with relevant
existing works. Finally, Section 7 concludes the paper.

2 Background

2.1 DeFi and Smart Contracts

Smart contracts are lines of code that are stored within a blockchain and can
be executed through transactions. Ethereum [33] was the first blockchain to
introduce Turing-complete smart contracts, and its implementation has been
crucial in the development of decentralized finance (DeFi)[32]. Smart contracts
are executed within decentralized blockchains. Without the requirement for a
trusted third-party involvement, they lead to a less costly and more efficient
execution.[37] Ethereum leverages the Ethereum Virtual Machine (EVM) for
the execution of smart contracts, which are compiled to EVM bytecode. DeFi
encompasses various financial services enabled through smart contracts, such as
lending, borrowing, and trading.

Smart contracts hold a balance of cryptocurrency or tokens, and this capabil-
ity is particularly relevant in DeFi. For example, users might deposit funds into
a smart contract to participate in a lending pool. The smart contract holds these
funds and manages their distribution according to its programmed logic. DeFi
allows for functionalities such as liquidity pools, where multiple users deposit
funds, and the smart contract automatically handles the pooling and distribu-
tion of assets.

A smart contract can also store data, known as the contract’s state. For ex-
ample, in a lending protocol, a smart contract could store information regarding

4 B. Parhizkari et al.

the total amount of funds lent out and the interest rates. These state variables
can be read or modified through functions within the smart contract. When a
user interacts with the contract, for instance, by lending assets, the contract
updates the relevant state variables by changing, for instance, the total amount
of funds lent.

Smart contracts can also call functions and send transactions to other smart
contracts. This ability to interact, often referred to as composability, is crucial for
building complex decentralized applications where multiple smart contracts work
together. For instance, a decentralized exchange might use one smart contract
to manage user balances, another to handle order matching, and another to
execute trades. These contracts need to communicate with each other to function
cohesively.

Following Ethereum, several other blockchains have also adopted smart con-
tracts with EVM compatibility, enabling developers to deploy Ethereum smart
contracts with minimal modifications. As the pioneer of smart contracts, Ethereum
is the most adopted blockchain for DeFi applications. However, it often suffers
from high transaction fees and network congestion due to its popularity. In this
paper, we consider three other EVM-compatible blockchains: Binance Chain [3],
Polygon [6], Arbitrum [2]. At the time of writing, Ethereum has a Total Value
Locked (TVL) of about 24B USD, BSC has a TVL of about 3B USD, Polygon
has a TVL of about 884M USD, and Arbitrum has a TVL of about 2B USD [4].
TVL refers to the amount of cryptocurrency or assets held within a smart con-
tract, a set of smart contracts, or a whole blockchain and it’s usually expressed
in USD.

2.2 Attacker Model

When examining DeF1i attacks on EVM-compatible blockchains, the attack pro-
cess can typically be divided into three main stages: deployment of malicious
contract, attack execution, and funds extraction.

In the deployment stage, the attacker deploys a malicious smart contract onto
the blockchain. The smart contract contains the logic and instructions required
to exploit vulnerabilities contained within the victim’s smart contract.

After deployment, the attacker executes the attack by triggering the logic
contained in the malicious smart contract. This can be performed either at de-
ployment time via the constructor or via a separate transaction. The constructor
embeds code that is executed only once, namely during deployment. Attackers
might embed the attack logic within the constructor itself to execute the attack
during deployment. Alternatively, the attacker embeds the attack logic into a
normal function and invokes it via a separate transaction after the malicious
contract has been deployed. This method gives the attacker more control over
the timing of the attack. It may be used to exploit more complex vulnerabilities
or to coordinate with other events on the blockchain. During the attack execu-
tion, the malicious contract may interact with the victim contracts in various
ways, such as by manipulating oracle data, performing reentrancy attacks, or

Timely Identification of Victim Addresses in DeFi Attacks 5

exploiting flaws in the business logic of the contract to bypass access control
checks, all aiming to create an illicit advantage for the attacker.

After the successful exploitation, the attacker seeks ways to extract the il-
legally obtained funds or assets. This might involve: extracting funds directly
to the attacker’s wallet address, using additional smart contracts to obscure
the source of the transactions to make tracing more difficult, or converting the
stolen assets through decentralized exchanges and mixing services to obfuscate
the traces further.

2.3 Private Pools

Maximal Extractable Value (MEV) is a concept that refers to the profit a user
can make through their ability to include, exclude, or reorder transactions within
certain blocks [22]. For instance, users can engage in practices like front-running,
where they observe a profitable transaction in the mempool and create another
transaction with a higher gas price to benefit from the knowledge of the pend-
ing transaction[31]. MEV has implications for blockchain security, fairness, and
transaction finality.

Flashbots [15] is a research and development organization aiming to miti-
gate the negative externalities of MEV. It provides a communication channel
called Flashbots Relay, through which users can send their transactions directly
to block producers without broadcasting them via the public mempool. This
mechanism allows for a more efficient way to capture MEV. In 2022, more than
80% of MEV extraction was happening via Flashbots and 13.2% was coming
from other private pools [31].

Attackers can also leverage private pools and transaction relay systems to
conduct their malicious activities with more privacy and precision [21]. Indeed,
private pools allow transactions to be executed privately before being broadcast
to the public blockchain. Thus, attackers can hide their activities until the attack
has been completed, obscuring the malicious contract’s interactions from any
tools that monitor the public mempool. Some private transaction pool providers,
such as Flashbots and Eden Networks are already operating on Ethereum, and
we expect this trend to grow in other chains, either.

3 Motivation

Despite the emergence of numerous attack analysis and detection tools over the
past years, the DeFi ecosystem continues to experience a growing trend in both
the rate of attacks and loss of funds. According to Immunefi’'s 2022 crypto loss
report [20], hackers exploited vulnerabilities in 134 different contracts of sev-
eral chains, including Ethereum and BSC, resulting in $3,773,906,837 in losses
throughout the year. It highlights that even though we can detect attacks, we
still lack in preventing attackers from fulfilling their malicious intentions and
protecting funds against such exploitation. While various existing tools iden-
tify suspicious behavior by monitoring chain activities, they still fall short in
automatically detecting the actual victims and notifying them on time.

6 B. Parhizkari et al.

We investigated a dataset of 69 attacks on Ethereum occurred between 2020
and 2023 on the Ethereum blockchain to determine if they utilized private pools
for execution (Figure 1). To do this, we focused on Flashbots [15] and Eden
networks [16] as two major private pool providers on Ethereum. We extracted
the attack transactions and checked whether they were relayed through Flashbots
or Eden network’s private pools. We found that none of these attacks originated
from Eden networks. However, we observed a rising trend in attacks executed on
Flashbots’ private pools. Out of all 26 attacks we analyzed in 2022, 13 or 50%
of them were executed through Flashbots, while only 2 out of 21 attacks in 2021
were executed through Flashbots. Considering the available data, we expect a
potential increase in the future usage of Flashbots’ private pool.

Our analysis revealed that attackers increasingly utilize private pools to ex-
ecute malicious transactions, allowing them to conceal their malicious activities
from monitoring tools. This highlights the importance of proactively analyzing
malicious contracts and preventing such attacks. Research by Zhou et al. [38]
analyzed 192 attacks and discovered that 56% of the hackers are not execut-
ing attacks automatically, providing defenders with a rescue time frame. Rescue
time is the time frame between deploying a malicious smart contract and the
first malicious transaction. This rescue time window provides an opportunity to
prevent malicious activities. For instance, for the recent attack on Euler Finance
[1], the attackers managed to drain $197,000,000 through a flash loan attack.
Even though the hackers used private pools to execute attack transactions, they
deployed the attack contract a few blocks before executing the actual attack
transactions, providing a short rescue time window.

The increasing use of private pools by attackers and a rescue time window
highlight the importance of identifying victims’ addresses in malicious contracts.
Identifying the addresses of potential victims makes it possible to notify them
and take proactive measures to protect their funds before the attack is executed.

4 Methodology

To achieve the goal of identifying victims’ addresses prior to hack transactions
and through the analysis of malicious smart contracts, we have developed a novel
methodology consisting of the following three consecutive steps: (1) extracting
potential victims’ addresses; (2) extracting deployers’ addresses; (3) determining
the actual victims.

4.1 Extracting Potential Victims’ Addresses

To execute a malicious transaction targeting specific victims, the victims’ ad-
dresses should be provided to the malicious contract beforehand. There are four
different approaches for a hacker to communicate victims’ addresses to malicious
contracts:

1. Including victim addresses in the deployment bytecode during contract cre-
ation. In this way, the victim addresses are hardcoded into the bytecode of
the malicious contract itself.

Timely Identification of Victim Addresses in DeFi Attacks 7

<05, <03, <05, <03, <05, <03 <03 <03 <03, <03, <03, 0>, <03, <0,
25,502 =025 =02, <02, <02, ~03, <02, <035 03,502,503, 503, 502,
%0 %05 %05 705 07 103 103 10g S0 03 03 09 707 0

quarter

Category
B Total Attacks

10 M Flashbots Attacks

sum of attack_count
E-3 o

]

Fig. 1. The progression of attacks performed through private pools and on Ethereum
over time, compared to the total number of attacks. Each bar represents the number
of attacks that occurred within one quarter of the year.

2. Importing them during the deployment of the malicious contract. Victim
addresses can be passed as parameters to the constructor of the malicious
contract during its creation.

3. Sending them by some other initialization transactions before malicious
transaction.

4. Sending victim addresses as parameters during the execution of the malicious
transaction.

We manually analyzed all malicious contracts in our dataset over four differ-
ent chains and we realized that in the majority of attacks (79.49%), the hackers
specify the victim’s address either in the malicious smart contracts or its con-
structor’s parameters. Only 20.51% of attacks rely on the attack transaction
to specify the victim as well. None of these attackers transmitted the victim’s
address for the first time through any transaction other than the first attack
transaction or the contract creation transaction.

Thus, the first step of our methodology is to extract all hardcoded addresses
from the deployment bytecode and the parameters of the malicious contract’s
constructor. To achieve this goal, we extract the deployment bytecode of ma-
licious smart contracts, convert them to readable opcodes, and extract all hex
strings with a length of 20 that was loaded with the operand of Push20. Addi-
tionally, we extracted all 20-byte values found within the inputs of the contract
creation transaction. Then, we examined each extracted address to determine if

8 B. Parhizkari et al.

an active contract was associated with it. For our analysis, we define an active
contract as a contract with at least one transaction.

From the creation transactions of the malicious contract, we extracted a set
of active contracts, which we refer to as potential victims. Note that external-
owned accounts (EOAs), non-active contracts, and non-addresses were excluded
as potential victims, as they cannot be targeted in an attack.

4.2 Extracting Deployers’ Addresses

The average number of potential victims for a malicious smart contract is 9.63,
making extracting the actual victim challenging. To visually represent this distri-
bution, we present the figure 2, illustrating the frequency of the potential victims
associated with each malicious contract. In the worst-case scenario, a malicious
contract included more than 40 potential victims.

Frequency
o o]

N

N

.“|“|IIII||III III i mi i
10 20 30 40

Number of Potential Victims per Contract

Fig. 2. Frequency of Number of Potential Victims in Different Attacks.

Note that the number of actual victim addresses in a single attack often
exceeds one. However, we have observed that all victim addresses are usually
associated with the same project. For example, let us consider the recent attack
on Euler Finance[1], an Ethereum-based borrowing and lending platform. It suf-
fered from a Flash loan attack on 13th March 2023, resulting in a substantial
loss of $196,000,000. Through the analysis of the deployment bytecode of the
corresponding malicious smart contract, we extracted 25 potential victims. Out
of all these potential victims, we discovered that only five unique deployers de-
ployed 15. Figure 3 represents all the potential victims of the attack on Euler
Finance. Seven are deployed by the same deployer address, all belonging to the
victim project.

Timely Identification of Victim Addresses in DeFi Attacks 9

Therefore, the methodology’s second step extracts each potential victim’s
deployer address, indicating affiliation to a specific DeFi project.

Euler Finance Exploiter: Oxebc29...

EEEEEEREEEERIE I
v vy v Y oYY vy vy Yy

w o o o f=1 mm mm mm j=2=] ommmMmmmm

% g m -3 fn, 3 & ¥ &8 f ££ g £ EFER Xccccgc

4 T 4 & M 3 € & § ¥ ®BE ¥e 2R g Le2anEa

I o o o [N — '] O s =3 = a o S ERRL

o x o & s i : s ~ N © g 30 T O oo P00 VO

o @ o H =) (=] : H ¥ oo o8 o e SO T T =T =11

¥ =2 E » R OE eg 235 &g s gegexog

e B P T 5 ax TR ERETAE

5 5o o 8 % 5z mE 5% GGEEEE
f f X £ f mm o =8 < et

: . - A 30 22 54 68ggezx

o o 5 @ o 23

: co 28 29 g£¢gogg

X 2 Uw o B o R g

o R aR Roa eI Nom

58 g ai ENT O 8R

o 2 E i CR

Nt By G B R B T e B W Rl Rl Rl R e
g U O U g o g g o g o (v v} lw] o
® © ® ® ®o® 6 ® o & © @ o] D @ @
T T Y T LT T T T T - = = =
 © © © © © & ©o & g =] o o =] =
L L K K s s < < = = < <
¢ o ® ®© @ ®© ®© o T o @©] @ (1] @®
F O o9 R T =32 = om &3 3 = %) 3 3
o o o o o [=] [=] o s (=] o o o o o
5 5 3 8 3% 5 & %5 3 & 3§ &% 5
SE22383¢558 8 5 28 g g
8 N g & P 6o 3 p P N o ¥ A S S

=
®
w

. Potential victims of Attack on Euler Finance clustered by their deployers.

4.3 Determining Actual Victims

The third stage of our methodology involves analyzing the potential victims
identified in the preceding steps in order to detect the actual victims. This stage
is based on the hypothesis that a significant association exists between the num-
ber of contracts deployed by a particular deployer and the probability of that
deployer being the victim.

This subsection presents the Dominant Deployer Identification (DDI) method,
which can be enhanced with the ERC20 exclusion criterion.

The DDI method focuses on the number of contracts deployed by each de-
ployer. By examining the deployment bytecode of malicious smart contracts,
this method aims to identify the deployer associated with the highest number
of deployed contracts within each malicious smart contract and designate all of
their contracts as victims. One key advantage of this method is its simplicity. It
relies on a straightforward metric, the number of contracts deployed, to deter-
mine the deployer with the highest deployment activity. The method provides
a direct approach to identifying victim addresses by singling out this deployer.
In cases where there is a tie between two or more different deployers for the
highest number of deployed contracts, the method does not label any deployer
as a victim. This limitation may result in the omission of potential victim ad-
dresses, potentially reducing the effectiveness of the identification process. We

10 B. Parhizkari et al.

introduced the following method to fix the limitations of tied deployers for the
highest number of deployed contracts. This method aim to filter out potential
victims that are less likely to be the actual victim.

The DDI method with the ERC20 exclusion criterion considers that ERC20
tokens are often implemented using smart contract libraries that have undergone
extensive code audits and are considered more robust and secure. This method
leverages this characteristic by filtering out ERC20 token contracts from the pool
of potential victims associated with deployers. By excluding ERC20 tokens, the
method aims to narrow down the set of potential victim addresses to those
less likely to have vulnerabilities or be targets of attacks. This filtering process
assumes that reusing well-audited smart contract libraries reduces the risk of
exploitation. After the filtering phase, the method counts the number of contracts
deployed by each deployer and follows the same procedure as the DDI method
without the ERC20 exclusion criterion. The advantage of adding this filtering is
that it introduces an additional layer of consideration by prioritizing contracts
that are more likely to be secure. By excluding ERC20 tokens, the method focuses
on contracts with a higher likelihood of being victims. However, it is essential to
acknowledge that this method assumes ERC20 token contracts are more secure
due to extensive code audits. While this assumption is generally valid, it does
not guarantee absolute certainty.

In the next section, we will evaluate the application of this methodology and
compare the effectiveness of the two proposed methods.

5 Evaluation

5.1 Dataset

To perform our analysis, we manually collected and labeled a dataset consisting
of 117 smart contract attacks. All these attacks occurred between 2020 and 2023,
and we gathered them from four different blockchains: 69 attacks occurred on
Ethereum, 28 of them were on BSC, 13 on Polygon, and finally 7 occurred on
Arbitrum. We analyzed the attacks documented in the Rekt database [8] and
extracted various data points such as deployment bytecode, runtime bytecode,
constructor parameters, and victim addresses of each attack. Table 1 provides a
detailed overview of our dataset and depicts the distribution of extracted attacks
across each chain.

According to our findings, out of all 117 attacks analyzed in our dataset, we
discovered that in 86 cases, the victim addresses were communicated through
deployment bytecode, and in 7 cases it was communicated through the con-
structor’s parameters. during contract creation; while initial hack transactions
revealed victim addresses in the remaining 24 attacks. We found that in all 117
attacks, the victim address could be found in the malicious contract’s deploy-
ment bytecode, the constructor’s inputs, or the initial attack transaction. Our
results clearly indicate that by analyzing contract creation transactions, we have
the potential to detect victim addresses for almost 80% of the attacks. However,

Timely Identification of Victim Addresses in DeFi Attacks 11

in the remaining attacks, the victim’s address remains unknown until the occur-
rence of the initial attack transaction.

Table 1. Number of smart contract attacks in our dataset, categorized by chain name.

Chain Victim address’s communication method Total

Deployment Bytecode Constructor Parameters Attack Tx

Ethereum 53 3 13 69
Binance 17 3 8 28
Polygon 10 1 2 13
Arbitrum 6 0 1 7
Total 86 7 24 117
73.50% 5.98% 20.51% 100%

5.2 Results

We implemented a script to execute our methodology on smart contracts’ de-
ployment bytecode. The script extracts all potential victims, cluster them based
on deployer addresses, and utilizes the Dominant Deployer Identification (DDI)
technique on these potential victims. If there is a single dominant set of ad-
dresses, the script labels them as the victim. This means we identified a single
deployer who deployed the highest number of deployed contracts within the ma-
licious smart contract. Otherwise, if multiple sets of addresses are dominant,
we will analyze them using the two specified victim determination methods we
explained in Section 4.3.

We evaluated the script on all 117 malicious contracts and calculated the
confusion matrix for each of the two methods. Table 2, demonstrates the cor-
responding measures. As can be observed, we successfully identified the victims
of 62 attacks out of all 117 attacks, using the DDI approach and without the
ERC20 exclusion criterion. The DDI approach combined with the ERC20 ex-
clusion criterion was able to identify the victims of 65 attacks. Furthermore,
the DDI approach without the ERC20 exclusion criterion correctly identified 21
attacks where the victim’s address wasn’t present in the deployment bytecode.
However, when using the DDI approach with the ERC20 exclusion criterion, we
identified 19 attacks where the victim’s address was not present in the deploy-
ment bytecode.

We can assess the effectiveness of the two methods by comparing their preci-
sion and recall. As predicted, incorporating the filtering analysis method resulted
in an increase in the number of false positives but a decrease in the number of
false negatives, resulting in a higher recall, but lower precision. Note that the
importance of recall’s absolute value is greater than that of precision. This is
because false negatives can lead to significant financial loss. False positives, on

12 B. Parhizkari et al.

Table 2. Results on the comparison of DDI Performance, with and without ERC20
exclusion criterion on the Dataset of hacks, across four different chains.

Chain Measure Methods
DDI DDI + ERC20 exclusion criterion
Ethereum Number of Attacks 69 69
True Positive 33 36
False Positive 7 9
False Negative 16 13
True Negative 13 11
Accuracy 66.67% 68.12%
Binance Number of Attacks 28 28
True Positive 17 17
False Positive 3 3
False Negative 3 3
True Negative 5 5
Accuracy 78.57% 78.57%
Polygon = Number of Attacks 13 13
True Positive 6 6
False Positive 0 0
False Negative 5 5
True Negative 2 2
Accuracy 61.54% 61.54%
Arbitrum Number of Attacks 7 7
True Positive 6 6
False Positive 0 0
False Negative 0 0
True Negative 1 1
Accuracy 100% 100%
Total Number of Attacks 117 117
Attacks with Hardcoded Victims 93 93
True Positive 62 65
False Positive 10 12
False Negative 24 21
True Negative 21 19
Precision 86.11% 84.42%
Recall 72.09% 75.58%
Accuracy 70.94% 71.79%
F1 score 78.48% 79.75%

Timely Identification of Victim Addresses in DeFi Attacks 13

the other hand, are relatively less costly. Until a specific threshold, such as a
weekly occurrence, is crossed, project owners might tolerate false positive re-
ports; however, a false negative report could directly result in a huge financial
loss and warrants closer attention.

Nonetheless, when evaluating the F1 score, which represents the harmonic
mean of precision and recall, we observe that the F1 score of DDI with the ERC20
exclusion criterion is 79.75%, hence surpassing the F1 score of DDI without the
ERC20 exclusion criterion which is 78.48%.

We have identified some limitations that challenge our ability to identify
the victims of all attacks. The first limitation refers to attacks where the ac-
tual victim’s address is transmitted solely through the first attack transaction.
It makes it impossible to identify the victims in the contract creation phase.
Second, attackers might combine the contract creation and execution in a single
transaction, leaving no rescue time to identify the attack before the execution
of the attack. Within our dataset, we found only one instance of such an at-
tack where contract creation and the malicious transaction occurred in the same
transaction. It was the Reentrancy attack on Rari Fuse on Arbitrum [5], which
took place on 30th April 2022. Another limitation is the dataset size. As shown
in the table, the ERC20 exclusion criterion yielded noticeable improvements in
the True Positive rate for Ethereum but did not affect Polygon. It is due to the
volume of data available on Ethereum compared to Polygon and BSC. How-
ever, it is worth noting that our DDI method successfully extracted all victim
addresses of attacks in Arbitrum, despite the smaller dataset for that chain.

6 Related Work

Smart Contract Attacks. A plethora of tools have been proposed to detect
and analyze attacks on smart contracts. ECFCHECKER [19] was the first tool
to enable the runtime detection of reentrancy attacks via a modified version
of the EVM. SEREUM [28] also proposed a modified version of the EVM, but
which could protect already deployed smart contracts by blocking reentrancy
attacks. EGIS [13,12] generalize SEREUM’s idea by leveraging a smart contract
to maintain and distribute a list of rules that are written using a domain-specific
language to detect and block smart contract attacks at runtime. Perez et al. [23]
use Datalog to study and analyze the bytecode of vulnerable smart contracts of
past attacks. Similar to ECFCHECKER and SEREUM, SODA [11] uses a modified
Ethereum client to inject custom modules for the online detection of malicious
transactions. ETHSCOPE [34] adds dynamic taint analysis to an Ethereum client
and replays historical transaction data which then stores traces into an Elastic-
search database which can be queried for past attacks. Zhou et al. [39] analyzed
real-world attacks and defenses adopted in the wild based on the transaction logs
produced by an uninstrumented EVM and decoupling decoupling adversarial ac-
tions from adversarial consequences. TXSPECTOR [35] adopts the Datalog facts
proposed by Brent et al. [9] to detect and analyze malicious transactions post-
mortem. Similarly, HORUS [14] also leverages Datalog to detect attacks against

14 B. Parhizkari et al.

smart contracts but leverages dynamic taint analysis to capture attacks that
span across multiple transactions. [36] Zheng et al. present XBlock-ETH — a
framework that generates Ethereum datasets in the form of CSV files consisting
of transactions, smart contracts, and token transfers, which can then be further
leveraged to detect attacks. Wang et al. [29] propose BLOCKEYE a real-time at-
tack detection system for DeFi projects, which performs symbolic reasoning on
the data flow of smart contract states, e.g., asset price, and flags a transaction as
a potential attack if a violation is detected on a critical invariant. Zhou et al. [38]
analyzed close to 200 real-world incidents and concluded that the average rescue
time frame for most smart contract attacks is 1£+4.1 hours, with the longest res-
cue time frame being 26.5 hours. Forta [17] tries to leverage the same fact as we
do, namely that there is a rescue window that allows them to detect malicious
deployment bytecode before an attacker can perform the actual attack. They use
a detection bot that uses a machine learning model to detect malicious smart
contract creations based on a contract’s disassembled EVM opcodes. Wang et
al. [30] propose a deep-learning-based attack detection system called DeFiScan-
ner that leverages information emitted via events during transaction execution
to cluster if a transaction is an attack or not. Gai et al. [18] present a tool called
BLockGPT, which leverages a large language model to detect abnormal trans-
actions from traces that are captured during the execution of a transaction. Qin
et al. [25] describe a methodology for whitehat hackers to monitor the public
mempool and to copy and frontrun attacker transactions before they can have
an impact on the victim contracts. Moreover, Qin et al. [26] introduce execution
property graphs for EVM transactions and leverage graph traversal techniques
to detect if a transaction is malicious or not. Most of the solutions that been
proposed so far either take too long to analyze transaction which makes them im-
practical to be used as real-time attack detection systems, or they depend on the
monitoring of pending transactions in the mempool which attackers can avoid
by leveraging private pools. Moreover, most of the aforementioned tools focus
on detecting attacks but not identifying victim addresses. However, identifying
victim addresses is crucial as this allows for them to be rescued.

Private Transactions. Lyu et al. [21] collected private transactions at a large
scale and performed analysis on their characteristics, such as transaction costs,
miner profits, as well as security impacts. Lyu et al. [21] find that although
private transactions were proposed to protect end users from attacks, they find
that only 18.1% of private transactions have been used for that purpose. Qin
et al. [27] provide a theoretical analysis of network congestion in the presence
of private pools, and conclude that as opposed to Flashbots’ claims, private
pools do not reduce network congestion. Weintraub et al. [31] show however that
Flashbots does at least reduce gas prices in some instances. Moreover, they also
show that a large number of MEVs are being extracted via private pools such as
Flashbots. Piet et al. [24] and Capponi et al. [10] analyze the profit distribution
within Flashbots and conclude, similarly to Weintraub et al. [31], that miners
are making most of the profit. Weintraub et al. [31] measures MEV ex- traction
before and after the inception of Flashbots and concludes that searchers were

Timely Identification of Victim Addresses in DeFi Attacks 15

making more profit prior to Flashbot sand that the number of searchers using
Flashbots is decreasing.

7 Conclusion

We investigated whether we can identify victims of attacks by analyzing the de-
ployment bytecode of malicious smart contracts. We introduced a comprehensive
methodology that involved extracting potential victims from deployment byte-
code and identifying the actual victims. By analyzing 117 attacks on DeFi across
four different blockchain networks, we discovered that in over 80% cases, the vic-
tim address is present within the malicious smart contracts even before the first
attack transaction occurs. To refine our approach, we introduced a technique
that involved identifying the dominant deployer among all potential victims and
filtering out ERC20 tokens, considered proven secure tokens, to improve the ac-
curacy of our findings. In future work, we aim to improve accuracy by formalizing
heuristics, refining analysis methods, and expanding our dataset.

References

1. $197 million stolen: Euler finance flash loan attack explained, https://blog.
chainalysis.com/reports/euler-finance-flash-loan-attack, Last accessed
26 Jun 2023

2. Arbitrum: Scaling Ethereum, https://arbitrum.io, Last accessed 29 Jun 2023

3. BNB Smart Chain: A Parallel BNB Chain to Enable Smart Contracts, https:
//www.bnbchain.org/en/smartChain, Last accessed 29 Jun 2023

4. DefiLlama, https://defillama.com, Last accessed 29 Jun 2023

5. Fuse Exploit Post Mortem, https://medium.com/@JackLongarzo/
fuse-exploit-post-mortem-76cel18d8974, Last accessed 30 Jun 2023

6. Polygon: Blockchains for mass adoption, https://polygon.technology, Last ac-
cessed 29 Jun 2023

7. Rubic dex aggregator hack leads to $1.4m of user funds stolen, https://www.
binance.com/en/feed/post/134920, Last accessed 16 Aug 2023

8. Top crypto hacks-rekt database, https://defiyield.app/rekt-database, Last
accessed 29 Jun 2023

9. Brent, L., Jurisevic, A., Kong, M., Liu, E., Gauthier, F., Gramoli, V., Holz, R.,
Scholz, B.: Vandal: A scalable security analysis framework for smart contracts.
arXiv preprint arXiv:1809.03981 (2018)

10. Capponi, A., Jia, R., Wang, Y.: The evolution of blockchain: from lit to dark. arXiv
preprint arXiv:2202.05779 (2022)

11. Chen, T., Cao, R., Li, T., Luo, X., Gu, G., Zhang, Y., Liao, Z., Zhu, H., Chen,
G., He, Z., et al.: Soda: A generic online detection framework for smart con-
tracts. In: Proceedings of the Network and Distributed System Security Symposium
(NDSS’20) (2020)

12. Ferreira Torres, C., Baden, M., Norvill, R., Fiz Pontiveros, B.B., Jonker, H., Mauw,
S.: Agis: Shielding vulnerable smart contracts against attacks. In: Proceedings of
the 15th ACM Asia Conference on Computer and Communications Security. pp.
584-597 (2020)

https://blog.chainalysis.com/reports/euler-finance-flash-loan-attack
https://blog.chainalysis.com/reports/euler-finance-flash-loan-attack
https://arbitrum.io
https://www.bnbchain.org/en/smartChain
https://www.bnbchain.org/en/smartChain
https://defillama.com
https://medium.com/@JackLongarzo/fuse-exploit-post-mortem-76ce18d8974
https://medium.com/@JackLongarzo/fuse-exploit-post-mortem-76ce18d8974
https://polygon.technology
https://www.binance.com/en/feed/post/134920
https://www.binance.com/en/feed/post/134920
https://defiyield.app/rekt-database

16

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

B. Parhizkari et al.

Ferreira Torres, C., Baden, M., Norvill, R., Jonker, H.: AGIS: Smart Shielding
of Smart Contracts. In: Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. pp. 2589-2591 (2019)

Ferreira Torres, C., Iannillo, A.K., Gervais, A., State, R.: The eye of horus: Spotting
and analyzing attacks on ethereum smart contracts. In: Financial Cryptography
and Data Security: 25th International Conference, FC 2021, Virtual Event, March
1-5, 2021, Revised Selected Papers, Part I 25. pp. 33-52. Springer (2021)
Flashbots: Flashbots docs, https://docs.flashbots.net/flashbots-auction/
overview, Last accessed 29 Jun 2023

Flashbots: Flashbots docs, https://docs.edennetwork.io, Last accessed 26 Jun
2023

Forta-Network: How forta’s predictive ml models de-
tect attacks before exploitation, https://forta.org/blog/
how-fortas-predictive-ml-models-detect-attacks-before-exploitation,
Last accessed 13 Jun 2023

Gali, Y., Zhou, L., Qin, K., Song, D., Gervais, A.: Blockchain large language models.
arXiv preprint arXiv:2304.12749 (2023)

Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sagiv,
M., Zohar, Y.: Online detection of effectively callback free objects with applications
to smart contracts. Proceedings of the ACM on Programming Languages 2(POPL),
48 (2017)

Immunefi: Immunefi crypto losses report, https://immunefi.com/reports, Last
accessed 26 Jun 2023

Lyu, X., Zhang, M., Zhang, X., Niu, J., Zhang, Y., Lin, Z.: An empirical study
on ethereum private transactions and the security implications. arXiv preprint
arXiv:2208.02858 (2022)

Mazorra, B., Reynolds, M., Daza, V.: Price of mev: towards a game theoretical ap-
proach to mev. In: Proceedings of the 2022 ACM CCS Workshop on Decentralized
Finance and Security. pp. 15-22 (2022)

Perez, D., Livshits, B.: Smart contract vulnerabilities: Vulnerable does not imply
exploited. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Vancouver, B.C. (Aug 2021)

Piet, J., Fairoze, J., Weaver, N.: Extracting godl [sic| from the salt mines: Ethereum
miners extracting value. CoRR abs/2203.15930 (2022)

Qin, K., Chaliasos, S., Zhou, L., Livshits, B., Song, D., Gervais, A.: The blockchain
imitation game. arXiv preprint arXiv:2303.17877 (2023)

Qin, K., Ye, Z., Wang, Z., Li, W., Zhou, L., Zhang, C., Song, D., Gervais, A.: To-
wards automated security analysis of smart contracts based on execution property
graph. CoRR abs/2305.14046 (2023)

Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: How dark
is the forest? In: 43rd IEEE Symposium on Security and Privacy, SP 2022, San
Francisco, CA, USA, May 22-26, 2022. pp. 198-214. IEEE (2022)

Rodler, M., Li, W., Karame, G., Davi, L.: Sereum: Protecting existing smart con-
tracts against re-entrancy attacks. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS’19) (2019)

Wang, B., Liu, H., Liu, C., Yang, Z., Ren, Q., Zheng, H., Lei, H.: Blockeye: Hunting
for defi attacks on blockchain. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion). pp. 17-20.
IEEE (2021)

https://docs.flashbots.net/flashbots-auction/overview
https://docs.flashbots.net/flashbots-auction/overview
https://docs.edennetwork.io
https://forta.org/blog/how-fortas-predictive-ml-models-detect-attacks-before-exploitation
https://forta.org/blog/how-fortas-predictive-ml-models-detect-attacks-before-exploitation
https://immunefi.com/reports

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Timely Identification of Victim Addresses in DeFi Attacks 17

Wang, B., Yuan, X., Duan, L., Ma, H., Su, C., Wang, W.: Defiscanner: Spotting
defi attacks exploiting logic vulnerabilities on blockchain. IEEE Transactions on
Computational Social Systems (2022)

Weintraub, B., Torres, C.F., Nita-Rotaru, C., State, R.: A flash(bot) in the pan:
measuring maximal extractable value in private pools. In: Barakat, C., Pelsser,
C., Benson, T.A., Choffnes, D.R. (eds.) Proceedings of the 22nd ACM Internet
Measurement Conference, IMC 2022, Nice, France, October 25-27, 2022. pp. 458~
471. ACM (2022)

Werner, S., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knottenbelt, W.:
Sok: Decentralized finance (defi). In: Proceedings of the 4th ACM Conference on
Advances in Financial Technologies. pp. 30-46 (2022)

Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1-32 (2014)

Wu, L., Wu, S., Zhou, Y., Li, R., Wang, Z., Luo, X., Wang, C., Ren, K.: Ethscope:
A transaction-centric security analytics framework to detect malicious smart con-
tracts on ethereum. arXiv preprint arXiv:2005.08278 (2020)

Zhang, M., Zhang, X., Zhang, Y., Lin, Z.: Txspector: Uncovering attacks in
ethereum from transactions. In: USENIX Security Symposium (2020)

Zheng, P., Zheng, Z., Wu, J., Dai, H.: Xblock-eth: Extracting and exploring
blockchain data from ethereum. IEEE Open J. Comput. Soc. 1, 95-106 (2020)
Zheng, 7., Xie, S., Dai, H.N., Chen, W., Chen, X., Weng, J., Imran, M.: An
overview on smart contracts: Challenges, advances and platforms. Future Gen-
eration Computer Systems 105, 475-491 (2020)

Zhou, L., Xiong, X., Ernstberger, J., Chaliasos, S., Wang, Z., Wang, Y., Qin, K.,
Wattenhofer, R., Song, D., Gervais, A.: Sok: Decentralized finance (defi) attacks.
Cryptology ePrint Archive (2022)

Zhou, S., Yang, Z., Xiang, J., Cao, Y., Yang, Z., Zhang, Y.: An ever-evolving game:
Evaluation of real-world attacks and defenses in ethereum ecosystem. In: 29th
USENIX Security Symposium (USENIX Security 20). pp. 2793-2810. USENIX
Association (Aug 2020)

	Timely Identification of Victim Addresses in DeFi Attacks

