Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Reinforcement Learning-based Security Orchestration for 5G-V2X Network Slicing at Cross-borders
BOUALOUACHE, Abdelwahab; Amara Korba, Abdelaziz; Senouci, Sidi-Mohammed et al.
2023In Reinforcement Learning-based Security Orchestration for 5G-V2X Network Slicing at Cross-borders
Peer reviewed
 

Documents


Texte intégral
Reinforcment_learning_Security_Orchestration_at_Crossborder.pdf
Postprint Auteur (253.78 kB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
5G-V2X; Network Slicing; Security Orchestration; Machine learning; Reinforcement Learninng
Résumé :
[en] As part of the 5G, Connected and Automated Vehicles (CAVs) will benefit from Network Slicing (NS) in several tailored 5G-Vehicle-to-Everything (V2X) services running on the same physical infrastructure. However, the use of 5G-NS may also increase the risk of cyber-attacks that could compromise 5G-V2X network slices (5G-V2X-NSs) and cause significant harm to CAV's passengers. This risk is particularly high at cross-borders, where CAVs move from their Home Mobile Network Operator (H-MNO) to a Visited MNO (V-MNO), with similar 5G-V2X-NSs in place. Therefore, deploying security services to neutralize 5G-V2X NS threats in this scenario is mandatory. However, if H-MNO and V-MNO act independently, deploying these security services could be inefficient and may result in increased memory, processing, and network resource consumption. Thus, MNOs should collaborate to orchestrate their security services to neutralize 5G-V2X NS attacks and optimize their costs efficiently. In this context, this paper proposes a novel approach to enhance the security of 5G-V2X NS at cross-borders using Reinforcement Learning (RL) based security orchestration. Specifically, we trained and deployed an RL agent interacting with both H-MNO and V-MNO. The RL agent efficiently deploys security services to effectively remove threats, optimize resource utilization, and minimize the impact on 5G-V2X-NSs. The performance results show that the RL-based security orchestration neutralizes threats with an average success rate of almost 100%. Additionally, resource consumption is minimal at less than 8%, and the acceptable impact on 5G-V2X-NSs is negligible, averaging less than 12%.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
BOUALOUACHE, Abdelwahab ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Amara Korba, Abdelaziz;  University of La Rochelle, France
Senouci, Sidi-Mohammed;  University of Borgogne, France
Ghamri-Doudane, Yacine;  University of La Rochelle, France
ENGEL, Thomas ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Reinforcement Learning-based Security Orchestration for 5G-V2X Network Slicing at Cross-borders
Date de publication/diffusion :
décembre 2023
Nom de la manifestation :
IEEE Global Communications Conference
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Kuala Lumpur, Malaisie
Date de la manifestation :
4–8 December 2023
Manifestation à portée :
International
Titre de l'ouvrage principal :
Reinforcement Learning-based Security Orchestration for 5G-V2X Network Slicing at Cross-borders
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Projet FnR :
FNR14891397 - Intelligent Orchestrated Security And Privacy-aware Slicing For 5g And Beyond Vehicular Networks, 2020 (01/04/2021-31/03/2024) - Thomas Engel
Disponible sur ORBilu :
depuis le 11 décembre 2023

Statistiques


Nombre de vues
219 (dont 12 Unilu)
Nombre de téléchargements
247 (dont 6 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
1
citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu