exciton dynamics; hot-electrons; metal-semiconductor heterojunction; thermionic electron injection; transition metal dichalcogenides; ultrafast dynamics; Dichalcogenides; Electrons injection; Exciton dynamics; Exciton formation; Metal semiconductors; Metal−semiconductor heterojunction; Semiconductor heterojunctions; Thermionic electron injection; Transition metal dichalcogenides; Ultra-fast dynamics; Electronic, Optical and Magnetic Materials; Biotechnology; Electrical and Electronic Engineering; Physics - Materials Science
Abstract :
[en] Inorganic van der Waals bonded semiconductors such as transition metal dichalcogenides are the subject of intense research due to their electronic and optical properties which are promising for next-generation optoelectronic devices. In this context, understanding the carrier dynamics, as well as charge and energy transfer at the interface between metallic contacts and semiconductors, is crucial and yet quite unexplored. Here, we present an experimental study to measure the effect of mutual interaction between thermionically injected and directly excited carriers on the exciton formation dynamics in bulk WS2. By employing a pump-push-probe scheme, where a pump pulse induces thermionic injection of electrons from a gold substrate into the conduction band of the semiconductor, and another delayed push pulse that excites direct transitions in the WS2, we can isolate the two processes experimentally and thus correlate the mutual interaction with its effect on the ultrafast dynamics in WS2. The fast decay time constants extracted from the experiments show a decrease with an increasing ratio between the injected and directly excited charge carriers, thus disclosing the impact of thermionic electron injection on the exciton formation dynamics. Our findings might offer a new vibrant direction for the integration of photonics and electronics, especially in active and photodetection devices, and, more in general, in upcoming all-optical nanotechnologies.
Disciplines :
Physics
Author, co-author :
KELLER, Kilian Richard ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Rojas-Aedo, Ricardo; Unilu - University of Luxembourg [LU] > Department of Physics and Materials Science
Zhang, Huiqin; Department of Electrical and Systems Engineering, University of Pennsylvania, 19104 Philadelphia, Pennsylvania, United States
SCHWEIZER, Pirmin ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Daniele BRIDA
ALLERBECK, Jonas ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Daniele BRIDA ; Nanotech@Surfaces Laboratory, EMPA, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
BRIDA, Daniele ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Jariwala, Deep ; Department of Electrical and Systems Engineering, University of Pennsylvania, 19104 Philadelphia, Pennsylvania, United States
Maccaferri, Nicolò ; Department of Physics and Materials Science, University of Luxembourg, 162a Avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg ; Department of Physics, Umeå University, Linnaeus väg 24, SE-90187 Umeå, Sweden
External co-authors :
yes
Language :
English
Title :
Ultrafast Thermionic Electron Injection Effects on Exciton Formation Dynamics at a van der Waals Semiconductor/Metal Interface.
Vetenskapsr?det Fonds National de la Recherche Luxembourg European Regional Development Fund H2020 Future and Emerging Technologies Army Research Laboratory H2020 European Research Council Division of Materials Research
Funding text :
N.M. and D.B. acknowledge support from the Luxembourg National Research Fund (grant no. C19/MS/13624497 “ULTRON”) and the European Union under the FETOPEN-01-2018-2019-2020 call (grant no. 964363 “ProID”). D.B. and K.R.K. acknowledge support from the European Research Council through grant no. 819871 (UpTEMPO). D.B. and R.R.-A. acknowledge support from ERDF Program (grant no. 2017-03-022-19 “Lux-Ultra-Fast”). N.M. acknowledges support from the Swedish Research Council (grant no. 2021-05784). D.J. and H.Z. acknowledge primary support from the U.S. Army Research Office under contract number W911NF-19-1-0109 as well as partial support from National Science Foundation supported University of Pennsylvania Materials Research Science and Engineering Center (MRSEC) (DMR-1720530).The authors acknowledge Prof. Stefano Corni and Dr. Margherita Marsili for fruitful discussions. N.M. acknowledges support from the Faculty of Science and Technology and the Department of Physics, Umeå University. H.Z. acknowledges support from Vagelos Institute of Energy Science and Technology graduate fellowship at the University of Pennsylvania.
Vogelsang, J.; Wittenbecher, L.; Pan, D.; Sun, J.; Mikaelsson, S.; Arnold, C. L.; L'Huillier, A.; Xu, H.; Mikkelsen, A. Coherent Excitation and Control of Plasmons on Gold Using Two-Dimensional Transition Metal Dichalcogenides. ACS Photonics 2021, 8, 1607-1615, 10.1021/acsphotonics.0c01795
Davoodi, F.; Talebi, N. Plasmon-Exciton Interactions in Nanometer-Thick Gold-WSe2 Multilayer Structures: Implications for Photodetectors, Sensors, and Light-Emitting Devices. ACS Appl. Nano Mater. 2021, 4, 6067-6074, 10.1021/acsanm.1c00889
Celano, U.; Maccaferri, N. Chasing Plasmons in Flatland. Nano Lett. 2019, 19, 7549-7552, 10.1021/acs.nanolett.9b04349
Zhang, H.; Abhiraman, B.; Zhang, Q.; Miao, J.; Jo, K.; Roccasecca, S.; Knight, M. W.; Davoyan, A. R.; Jariwala, D. Hybrid Exciton-Plasmon-Polaritons in van Der Waals Semiconductor Gratings. Nat. Commun. 2020, 11, 1-9, 10.1038/s41467-020-17313-2
Kang, Y.; Najmaei, S.; Liu, Z.; Bao, Y.; Wang, Y.; Zhu, X.; Halas, N. J.; Nordlander, P.; Ajayan, P. M.; Lou, J.; Fang, Z. Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer. Adv. Mater. 2014, 26, 6467-6471, 10.1002/adma.201401802
Wang, L.; Wang, Z.; Wang, H. Y.; Grinblat, G.; Huang, Y. L.; Wang, D.; Ye, X. H.; Li, X. B.; Bao, Q.; Wee, A. S.; Maier, S. A.; Chen, Q. D.; Zhong, M. L.; Qiu, C. W.; Sun, H. B. Slow Cooling and Efficient Extraction of C-Exciton Hot Carriers in MoS2 Monolayer. Nat. Commun. 2017, 8, 13906, 10.1038/ncomms13906
Govorov, A. O.; Bryant, G. W.; Zhang, W.; Skeini, T.; Lee, J.; Kotov, N. A.; Slocik, J. M.; Naik, R. R. Exciton-Plasmon Interaction and Hybrid Excitons in Semiconductor-Metal Nanoparticle Assemblies. Nano Lett. 2006, 6, 984-994, 10.1021/nl0602140
Lee, H. S.; Luong, D. H.; Kim, M. S.; Jin, Y.; Kim, H.; Yun, S.; Lee, Y. H. Reconfigurable Exciton-Plasmon Interconversion for Nanophotonic Circuits. Nat. Commun. 2016, 7, 13663, 10.1038/ncomms13663
Chen, Y. H.; Tamming, R. R.; Chen, K.; Zhang, Z.; Liu, F.; Zhang, Y.; Hodgkiss, J. M.; Blaikie, R. J.; Ding, B.; Qiu, M. Bandgap Control in Two-Dimensional Semiconductors via Coherent Doping of Plasmonic Hot Electrons. Nat. Commun. 2021, 12, 4332, 10.1038/s41467-021-24667-8
Wong, J.; Jariwala, D.; Tagliabue, G.; Tat, K.; Davoyan, A. R.; Sherrott, M. C.; Atwater, H. A. High Photovoltaic Quantum Efficiency in Ultrathin van Der Waals Heterostructures. ACS Nano 2017, 11, 7230-7240, 10.1021/acsnano.7b03148
Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. Phys. Rev. Lett. 2014, 113, 76802, 10.1103/PhysRevLett.113.076802
Geim, A. K.; Grigorieva, I. V. Van Der Waals Heterostructures. Nature 2013, 499, 419-425, 10.1038/nature12385
Lince, J. R.; Carré, D. J.; Fleischauer, P. D. Schottky-Barrier Formation on a Covalent Semiconductor without Fermi-Level Pinning: The Metal-MoS2(0001) Interface. Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 36, 1647-1656, 10.1103/PhysRevB.36.1647
LaMountain, T.; Lenferink, E. J.; Chen, Y. J.; Stanev, T. K.; Stern, N. P. Environmental Engineering of Transition Metal Dichalcogenide Optoelectronics. Front. Phys. 2018, 13, 138114, 10.1007/s11467-018-0795-x
Li, Z.; Ezhilarasu, G.; Chatzakis, I.; Dhall, R.; Chen, C. C.; Cronin, S. B. Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS2 and Metal/WSe2 Heterojunctions. Nano Lett. 2015, 15, 3977-3982, 10.1021/acs.nanolett.5b00885
He, J.; He, D.; Wang, Y.; Cui, Q.; Ceballos, F.; Zhao, H. Spatiotemporal Dynamics of Excitons in Monolayer and Bulk WS2. Nanoscale 2015, 7, 9526-9531, 10.1039/c5nr00188a
Ceballos, F.; Cui, Q.; Bellus, M. Z.; Zhao, H. Exciton Formation in Monolayer Transition Metal Dichalcogenides. Nanoscale 2016, 8, 11681-11688, 10.1039/c6nr02516a
Trovatello, C.; Katsch, F.; Borys, N. J.; Selig, M.; Yao, K.; Borrego-Varillas, R.; Scotognella, F.; Kriegel, I.; Yan, A.; Zettl, A.; Schuck, P. J.; Knorr, A.; Cerullo, G.; Conte, S. D. The Ultrafast Onset of Exciton Formation in 2D Semiconductors. Nat. Commun. 2020, 11, 5277, 10.1038/s41467-020-18835-5
Kudlis, A.; Iorsh, I. Modeling Excitonic Mott Transitions in Two-Dimensional Semiconductors. Phys. Rev. B 2021, 103, 115307, 10.1103/PhysRevB.103.115307
Makino, T.; Tamura, K.; Chia, C. H.; Segawa, Y.; Kawasaki, M.; Ohtomo, A.; Koinuma, H. Optical Properties of ZnO: Al Epilayers: Observation of Room-Temperature Many-Body Absorption-Edge Singularity. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 65, 121201, 10.1103/PhysRevB.65.121201
Yuan, L.; Chung, T. F.; Kuc, A.; Wan, Y.; Xu, Y.; Chen, Y. P.; Heine, T.; Huang, L. Photocarrier Generation from Interlayer Charge-Transfer Transitions in WS2-Graphene Heterostructures. Sci. Adv. 2018, 4, e1700324 10.1126/sciadv.1700324
Fu, S.; du Fossé, I.; Jia, X.; Xu, J.; Yu, X.; Zhang, H.; Zheng, W.; Krasel, S.; Chen, Z.; Wang, Z. M.; Tielrooij, K. J.; Bonn, M.; Houtepen, A. J.; Wang, H. I. Long-Lived Charge Separation Following Pump-Wavelength-Dependent Ultrafast Charge Transfer in Graphene/WS2 Heterostructures. Sci. Adv. 2021, 7, eabd9061 10.1126/sciadv.abd9061
Trovatello, C.; Piccinini, G.; Forti, S.; Fabbri, F.; Rossi, A.; De Silvestri, S. D.; Coletti, C.; Cerullo, G.; Dal Conte, S. D. Ultrafast Hot Carrier Transfer in WS 2/Graphene Large Area Heterostructures. npj 2D Mater. Appl. 2022, 6, 24, 10.1038/s41699-022-00299-4
Jin, Z.; Li, X.; Mullen, J. T.; Kim, K. W. Intrinsic Transport Properties of Electrons and Holes in Monolayer Transition-Metal Dichalcogenides. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 045422, 10.1103/PhysRevB.90.045422
Zhu, B.; Chen, X.; Cui, X. Exciton Binding Energy of Monolayer WS2. Sci. Rep. 2015, 5, 9218, 10.1038/srep09218
Durán Retamal, J. R.; Periyanagounder, D.; Ke, J. J.; Tsai, M. L.; He, J. H. Charge Carrier Injection and Transport Engineering in Two-Dimensional Transition Metal Dichalcogenides. Chem. Sci. 2018, 9, 7727-7745, 10.1039/c8sc02609b
Park, S.; Mutz, N.; Schultz, T.; Blumstengel, S.; Han, A.; Aljarb, A.; Li, L. J.; List-Kratochvil, E. J. W.; Amsalem, P.; Koch, N. Direct Determination of Monolayer MoS2 and WSe2 Exciton Binding Energies on Insulating and Metallic Substrates. 2D Mater. 2018, 5, 025003, 10.1088/2053-1583/aaa4ca
Jo, K.; Kumar, P.; Orr, J.; Anantharaman, S. B.; Miao, J.; Motala, M. J.; Bandyopadhyay, A.; Kisslinger, K.; Muratore, C.; Shenoy, V. B.; Stach, E. A.; Glavin, N. R.; Jariwala, D. Direct Optoelectronic Imaging of 2D Semiconductor-3D Metal Buried Interfaces. ACS Nano 2021, 15, 5618-5630, 10.1021/acsnano.1c00708
Chernikov, A.; Ruppert, C.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. Population Inversion and Giant Bandgap Renormalization in Atomically Thin WS 2 Layers. Nat. Photonics 2015, 9, 466-470, 10.1038/nphoton.2015.104
Dal Conte, S.; Trovatello, C.; Gadermaier, C.; Cerullo, G. Ultrafast Photophysics of 2D Semiconductors and Related Heterostructures. Trends Chem. 2020, 2, 28-42, 10.1016/j.trechm.2019.07.007
Della Valle, G.; Conforti, M.; Longhi, S.; Cerullo, G.; Brida, D. Real-Time Optical Mapping of the Dynamics of Nonthermal Electrons in Thin Gold Films. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 155139, 10.1103/PhysRevB.86.155139
Puppin, M. Time-and Angle-Resolved Photoemission Spectroscopy on Bidimensional Semiconductors with a 500 KHz Extreme Ultraviolet Light Source. Ph.D. Thesis, Freie Universität Berlin, 2017.