[en] Tumour necrosis factor (TNF) is a pro-inflammatory cytokine that has important roles in mammalian immunity and cellular homeostasis. Deregulation of TNF receptor (TNFR) signalling is associated with many inflammatory disorders, including various types of arthritis and inflammatory bowel disease, and targeting TNF has been an effective therapeutic strategy in these diseases. This Review focuses on the recent advances that have been made in understanding TNFR signalling and the consequences of its deregulation for cellular survival, apoptosis and regulated necrosis. We discuss how TNF-induced survival signals are distinguished from those that lead to cell death. Finally, we provide a brief overview of the role of TNF in inflammatory and autoimmune diseases, and we discuss up-to-date and future treatment strategies for these disorders.
Disciplines :
Immunology & infectious disease
Author, co-author :
BRENNER, Dirk ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Immunology and Genetics ; 1] Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg. [2
Blaser, Heiko; 1] The Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada. [2
Mak, Tak W; 1] The Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada. [2] Department of Immunology, University of Toronto, Ontario M5S 1A8, Canada. [3] Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Ontario M5G 1L7, Canada
External co-authors :
yes
Language :
English
Title :
Regulation of tumour necrosis factor signalling: live or let die.
The authors thank M. Saunders for excellent scientific editing and M. Brenner for general support. D.B. is supported by the ATTRACT Programme of the National Research Fund Luxembourg (FNR).
Aggarwal, B. B. et al. Human tumor necrosis factor. Production, purification, and characterization. J. Biol. Chem. 260, 2345-2354 (1985).
Aggarwal, B. B. Signalling pathways of the TNF superfamily: a double-edged sword. Nature Rev. Immunol. 3, 745-756 (2003).
Aggarwal, B. B., Gupta, S. C. & Kim, J. H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119, 651-665 (2012).
Kriegler, M., Perez, C., DeFay, K., Albert, I. & Lu, S. D. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53, 45-53 (1988).
Black, R. A. et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-? from cells. Nature 385, 729-733 (1997).
Eck, M. J. & Sprang, S. R. The structure of tumor necrosis factor-? at 2.6 Å resolution. Implications for receptor binding. J. Biol. Chem. 264, 17595-17605 (1989).
Jones, E. Y., Stuart, D. I. & Walker, N. P. Structure of tumour necrosis factor. Nature 338, 225-228 (1989).
Adrain, C., Zettl, M., Christova, Y., Taylor, N. & Freeman, M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 335, 225-228 (2012).
McIlwain, D. R. et al. iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 335, 229-232 (2012).
Faustman, D. & Davis, M. TNF receptor 2 pathway: drug target for autoimmune diseases. Nature Rev. Drug Discov. 9, 482-493 (2010).
Lavrik, I., Golks, A. & Krammer, P. H. Death receptor signaling. J. Cell Sci. 118, 265-267 (2005).
Tartaglia, L. A., Ayres, T. M., Wong, G. H. & Goeddel, D. V. A novel domain within the 55 kd TNF receptor signals cell death. Cell 74, 845-853 (1993).
Hsu, H., Xiong, J. & Goeddel, D. V. The TNF receptor 1-associated protein TRADD signals cell death and NF-?B activation. Cell 81, 495-504 (1995).
Rothe, M., Sarma, V., Dixit, V. M. & Goeddel, D. V. TRAF2-mediated activation of NF-?B by TNF receptor 2 and CD40. Science 269, 1424-1427 (1995).
Lenardo, M. J. Interleukin-2 programs mouse T lymphocytes for apoptosis. Nature 353, 858-861 (1991).
Pimentel-Muinos, F. X. & Seed, B. Regulated commitment of TNF receptor signaling: a molecular switch for death or activation. Immunity 11, 783-793 (1999).
Legler, D. F., Micheau, O., Doucey, M. A., Tschopp, J. & Bron, C. Recruitment of TNF receptor 1 to lipid rafts is essential for TNF?-mediated NF-?B activation. Immunity 18, 655-664 (2003).
Hsu, H., Huang, J., Shu, H. B., Baichwal, V. & Goeddel, D. V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387-396 (1996).
Ting, A. T., Pimentel-Muinos, F. X. & Seed, B. RIP mediates tumor necrosis factor receptor 1 activation of NF-?B but not Fas/APO-1-initiated apoptosis. EMBO J. 15, 6189-6196 (1996).
Hsu, H., Shu, H. B., Pan, M. G. & Goeddel, D. V. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299-308 (1996).
Park, Y. C. et al. A novel mechanism of TRAF signaling revealed by structural and functional analyses of the TRADD-TRAF2 interaction. Cell 101, 777-787 (2000).
Grech, A. P. et al. Tumor necrosis factor receptor 2 (TNFR2) signaling is negatively regulated by a novel, carboxyl-terminal TNFR-associated factor 2 (TRAF2)-binding site. J. Biol. Chem. 280, 31572-31581 (2005).
Fotin-Mleczek, M. et al. Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J. Cell Sci. 115, 2757-2770 (2002).
Yeh, W. C. et al. Early lethality, functional NF-?B activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7, 715-725 (1997).
Chen, N. J. et al. Beyond tumor necrosis factor receptor: TRADD signaling in toll-like receptors. Proc. Natl Acad. Sci. USA 105, 12429-12434 (2008).
Ermolaeva, M. A. et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nature Immunol. 9, 1037-1046 (2008).
Pobezinskaya, Y. L. et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nature Immunol. 9, 1047-1054 (2008).
Devin, A. et al. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12, 419-429 (2000).
Lee, T. H., Shank, J., Cusson, N. & Kelliher, M. A. The kinase activity of Rip1 is not required for tumor necrosis factor-?-induced I?B kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J. Biol. Chem. 279, 33185-33191 (2004).
Mahoney, D. J. et al. Both cIAP1 and cIAP2 regulate TNF?-mediated NF-?B activation. Proc. Natl Acad. Sci. USA 105, 11778-11783 (2008).
Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425-479 (1998).
Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203-229 (2012).
Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458, 422-429 (2009).
Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNF? requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245-257 (2006).
Li, H., Kobayashi, M., Blonska, M., You, Y. & Lin, X. Ubiquitination of RIP is required for tumor necrosis factor ?-induced NF-?B activation. J. Biol. Chem. 281, 13636-13643 (2006).
Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689-700 (2008).
Zheng, C., Kabaleeswaran, V., Wang, Y., Cheng, G. & Wu, H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol. Cell 38, 101-113 (2010).
Yin, Q., Lamothe, B., Darnay, B. G. & Wu, H. Structural basis for the lack of E2 interaction in the RING domain of TRAF2. Biochemistry 48, 10558-10567 (2009).
Vince, J. E. et al. TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (TNF) to efficiently activate NF-?b and to prevent TNF-induced apoptosis. J. Biol. Chem. 284, 35906-35915 (2009).
Xu, M., Skaug, B., Zeng, W. & Chen, Z. J. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNF? and IL-1?. Mol. Cell 36, 302-314 (2009).
Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831-844 (2009).
Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591-596 (2011).
Dynek, J. N. et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J. 29, 4198-4209 (2010).
Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-?B activation. Nature Cell Biol. 11, 123-132 (2009).
Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877-4887 (2006).
Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-?B activity and apoptosis. Nature 471, 637-641 (2011).
Tokunaga, F. et al. SHARPIN is a component of the NF-?B-activating linear ubiquitin chain assembly complex. Nature 471, 633-636 (2011).
Israel, A. The IKK complex, a central regulator of NF-?B activation. Cold Spring Harb. Perspect. Biol. 2, a000158 (2010).
Hoffmann, A. & Baltimore, D. Circuitry of nuclear factor ?B signaling. Immunol. Rev. 210, 171-186 (2006).
Weil, R. et al. Induction of the NF-?B cascade by recruitment of the scaffold molecule NEMO to the T cell receptor. Immunity 18, 13-26 (2003).
Wu, C. J., Conze, D. B., Li, T., Srinivasula, S. M. & Ashwell, J. D. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-?B activation [corrected]. Nature Cell Biol. 8, 398-406 (2006).
Lo, Y. C. et al. Structural basis for recognition of diubiquitins by NEMO. Mol. Cell 33, 602-615 (2009).
Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-?B activation. Cell 136, 1098-1109 (2009).
Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-351 (2001).
Kanayama, A. et al. TAB2 and TAB3 activate the NF-?B pathway through binding to polyubiquitin chains. Mol. Cell 15, 535-548 (2004).
Shim, J. H. et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19, 2668-2681 (2005).
Komander, D. et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 10, 466-473 (2009).
Emmerich, C. H. et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc. Natl Acad. Sci. USA 110, 15247-15252 (2013).
Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181-190 (2003).
Wilson, T. R. et al. Procaspase 8 overexpression in non-small-cell lung cancer promotes apoptosis induced by FLIP silencing. Cell Death Differ. 16, 1352-1361 (2009).
Brenner, D. & Mak, T. W. Mitochondrial cell death effectors. Curr. Opin. Cell Biol. 21, 871-877 (2009).
He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-?. Cell 137, 1100-1111 (2009).
Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112-1123 (2009).
Enesa, K. et al. NF-?B suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J. Biol. Chem. 283, 7036-7045 (2008).
Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-?B signalling. Nature 430, 694-699 (2004).
Liao, W. et al. CARP-2 is an endosome-associated ubiquitin ligase for RIP and regulates TNF-induced NF-?B activation. Curr. Biol. 18, 641-649 (2008).
Verhelst, K. et al. A20 inhibits LUBAC-mediated NF-?B activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 31, 3845-3855 (2012).
Wang, L., Du, F. & Wang, X. TNF-? induces two distinct caspase-8 activation pathways. Cell 133, 693-703 (2008).
Hitomi, J. et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311-1323 (2008).
Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-?B signalling by deubiquitination. Nature 424, 801-805 (2003).
Tenev, T. et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432-448 (2011).
Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42 (2000).
Wu, G. et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008-1012 (2000).
Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNF?-dependent apoptosis. Cell 131, 682-693 (2007).
Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-?B activation, and TNF?-dependent apoptosis. Cell 131, 669-681 (2007).
Yang, Q. H. & Du, C. Smac/DIABLO selectively reduces the levels of c-IAP1 and c-IAP2 but not that of XIAP and livin in HeLa cells. J. Biol. Chem. 279, 16963-16970 (2004).
Zarnegar, B. J. et al. Noncanonical NF-?B activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nature Immunol. 9, 1371-1378 (2008).
Petersen, S. L. et al. Autocrine TNF? signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12, 445-456 (2007).
Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNF-?-induced apoptosis by NF-?B. Science 274, 787-789 (1996).
Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817-827 (1996).
Golks, A., Brenner, D., Fritsch, C., Krammer, P. H. & Lavrik, I. N. c-FLIPR, a new regulator of death receptor-induced apoptosis. J. Biol. Chem. 280, 14507-14513 (2005).
Micheau, O., Lens, S., Gaide, O., Alevizopoulos, K. & Tschopp, J. NF-?B signals induce the expression of c-FLIP. Mol. Cell. Biol. 21, 5299-5305 (2001).
Karin, M. & Lin, A. NF-?B at the crossroads of life and death. Nature Immunol. 3, 221-227 (2002).
Chang, L. et al. The E3 ubiquitin ligase itch couples JNK activation to TNF?-induced cell death by inducing c-FLIPL turnover. Cell 124, 601-613 (2006).
Pop, C. et al. FLIPL induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem. J. 433, 447-457 (2011).
Oberst, A. et al. Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471, 363-367 (2011).
Dillon, C. P. et al. Survival function of the FADD-CASPASE-8-cFLIPL complex. Cell Rep. 1, 401-407 (2012).
Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190-195 (1997).
Shu, H. B., Halpin, D. R. & Goeddel, D. V. Casper is a FADD-and caspase-related inducer of apoptosis. Immunity 6, 751-763 (1997).
Rasper, D. M. et al. Cell death attenuation by 'Usurpin', a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Differ. 5, 271-288 (1998).
Feoktistova, M. et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449-463 (2011).
Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3-11 (2009).
Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19, 107-120 (2012).
Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477-1485 (1998).
Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol. 1, 489-495 (2000).
Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332-336 (2009).
Zheng, L. et al. Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol. Cell. Biol. 26, 3505-3513 (2006).
Kavuri, S. M. et al. Cellular FLICE-inhibitory protein (cFLIP) isoforms block CD95-and TRAIL death receptor-induced gene induction irrespective of processing of caspase-8 or cFLIP in the death-inducing signaling complex. J. Biol. Chem. 286, 16631-16646 (2011).
Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Rev. Mol. Cell Biol. 11, 700-714 (2010).
Meylan, E. & Tschopp, J. The RIP kinases: crucial integrators of cellular stress. Trends Biochem. Sci. 30, 151-159 (2005).
Zhang, D., Lin, J. & Han, J. Receptor-interacting protein (RIP) kinase family. Cell. Mol. Immunol. 7, 243-249 (2010).
Newton, K., Sun, X. & Dixit, V. M. Kinase RIP3 is dispensable for normal NF-?Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol. Cell. Biol. 24, 1464-1469 (2004).
Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339-350 (2012).
Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chem. Biol. 1, 112-119 (2005).
Feng, S. et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell. Signal. 19, 2056-2067 (2007).
Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368-372 (2011).
Zhang, H. et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373-376 (2011).
Kaiser, W. J. et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl Acad. Sci. USA 111, 7753-7758 (2014).
Vanlangenakker, N., Bertrand, M. J., Bogaert, P., Vandenabeele, P. & Vanden Berghe, T. TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis. 2, e230 (2011).
Seymour, R. E. et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun. 8, 416-421 (2007).
Rickard, J. A. et al. TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. eLife 3, e03464 (2014).
Berger, S. B. et al. Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476-5480 (2014).
Peltzer, N. et al. HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep. 9, 153-165 (2014).
Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl Acad. Sci. USA 109, 5322-5327 (2012).
Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213-227 (2012).
Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443-453 (2013).
Wu, J. et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 23, 994-1006 (2013).
Xie, T. et al. Structural insights into RIP3-mediated necroptotic signaling. Cell Rep. 5, 70-78 (2013).
Chen, W. et al. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J. Biol. Chem. 288, 16247-16261 (2013).
Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biol. 16, 55-65 (2014).
Chen, X. et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 24, 105-121 (2014).
Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133-146 (2014).
Bradley, J. R. TNF-mediated inflammatory disease. J. Pathol. 214, 149-160 (2008).
Croft, M. et al. TNF superfamily in inflammatory disease: translating basic insights. Trends Immunol. 33, 144-152 (2012).
Croft, M., Benedict, C. A. & Ware, C. F. Clinical targeting of the TNF and TNFR superfamilies. Nature Rev. Drug Discov. 12, 147-168 (2013).
Beutler, B., Milsark, I. W. & Cerami, A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229, 869-871 (1985).
Natanson, C., Hoffman, W. D., Suffredini, A. F., Eichacker, P. Q. & Danner, R. L. Selected treatment strategies for septic shock based on proposed mechanisms of pathogenesis. Ann. Intern. Med. 120, 771-783 (1994).
Docke, W. D. et al. Monocyte deactivation in septic patients: restoration by IFN-? treatment. Nature Med. 3, 678-681 (1997).
Reinhart, K. & Karzai, W. Anti-tumor necrosis factor therapy in sepsis: update on clinical trials and lessons learned. Crit. Care Med. 29, S121-125 (2001).
Lv, S. et al. Anti-TNF-? therapy for patients with sepsis: a systematic meta-analysis. Int. J. Clin. Pract. 68, 520-528 (2014).
Keffer, J. et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 10, 4025-4031 (1991).
Brennan, F. M., Chantry, D., Jackson, A., Maini, R. & Feldmann, M. Inhibitory effect of TNF ? antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2, 244-247 (1989).
Moreland, L. W. et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N. Engl. J. Med. 337, 141-147 (1997).
Moelants, E. A., Mortier, A., Van Damme, J. & Proost, P. Regulation of TNF-? with a focus on rheumatoid arthritis. Immunol. Cell Biol. 91, 393-401 (2013).
Prieto-Perez, R. et al. Genetics of psoriasis and pharmacogenetics of biological drugs. Autoimmune Dis. 2013, 613086 (2013).
Neurath, M. F. New targets for mucosal healing and therapy in inflammatory bowel diseases. Mucosal Immunol. 7, 6-19 (2014).
Sieper, J. Developments in therapies for spondyloarthritis. Nature Rev. Rheumatol. 8, 280-287 (2012).
Dahlen, R. et al. Infliximab inhibits activation and effector functions of peripheral blood T cells in vitro from patients with clinically active ulcerative colitis. Scand. J. Immunol. 78, 275-284 (2013).
Mastrandrea, L. et al. Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care 32, 1244-1249 (2009).
Ryba, M. et al. Anti-TNF rescue CD4+Foxp3+ regulatory T cells in patients with type 1 diabetes from effects mediated by TNF. Cytokine 55, 353-361 (2011).
Tack, C. J., Kleijwegt, F. S., Van Riel, P. L. & Roep, B. O. Development of type 1 diabetes in a patient treated with anti-TNF-? therapy for active rheumatoid arthritis. Diabetologia 52, 1442-1444 (2009).
Bloom, B. J. Development of diabetes mellitus during etanercept therapy in a child with systemic-onset juvenile rheumatoid arthritis. Arthritis Rheum. 43, 2606-2608 (2000).
Hofman, F. M., Hinton, D. R., Johnson, K. & Merrill, J. E. Tumor necrosis factor identified in multiple sclerosis brain. J. Exp. Med. 170, 607-612 (1989).
Lopez-Diego, R. S. & Weiner, H. L. Novel therapeutic strategies for multiple sclerosis-a multifaceted adversary. Nature Rev. Drug Discov. 7, 909-925 (2008).
Robinson, W. H., Genovese, M. C. & Moreland, L. W. Demyelinating and neurologic events reported in association with tumor necrosis factor ? antagonism: by what mechanisms could tumor necrosis factor ? antagonists improve rheumatoid arthritis but exacerbate multiple sclerosis? Arthritis Rheum. 44, 1977-1983 (2001).
Bosch, X., Saiz, A. & Ramos-Casals, M. Monoclonal antibody therapy-associated neurological disorders. Nature Rev. Neurol. 7, 165-172 (2011).
Gregory, A. P. et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature 488, 508-511 (2012).
Stohl, W. Future prospects in biologic therapy for systemic lupus erythematosus. Nature Rev. Rheumatol. 9, 705-720 (2013).
Ban, L. et al. Selective death of autoreactive T cells in human diabetes by TNF or TNF receptor 2 agonism. Proc. Natl Acad. Sci. USA 105, 13644-13649 (2008).
Park, S. H., Park-Min, K. H., Chen, J., Hu, X. & Ivashkiv, L. B. Tumor necrosis factor induces GSK3 kinase-mediated cross-tolerance to endotoxin in macrophages. Nature Immunol. 12, 607-615 (2011).
Ali, T. et al. Clinical use of anti-TNF therapy and increased risk of infections. Drug Healthc. Patient Saf. 5, 79-99 (2013).
Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295, 2275-2285 (2006).
Hansel, T. T., Kropshofer, H., Singer, T., Mitchell, J. A. & George, A. J. The safety and side effects of monoclonal antibodies. Nature Rev. Drug Discov. 9, 325-338 (2010).
Thalayasingam, N. & Isaacs, J. D. Anti-TNF therapy. Best Pract. Res. Clin. Rheumatol. 25, 549-567 (2011).
van Schouwenburg, P. A., Rispens, T. & Wolbink, G. J. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nature Rev. Rheumatol. 9, 164-172 (2013).
Cleynen, I. & Vermeire, S. Paradoxical inflammation induced by anti-TNF agents in patients with IBD. Nature Rev. Gastroenterol. Hepatol. 9, 496-503 (2012).
Targownik, L. E. & Bernstein, C. N. Infectious and malignant complications of TNF inhibitor therapy in IBD. Am. J. Gastroenterol. 108, 1835-1842 (2013).
Sathish, J. G. et al. Challenges and approaches for the development of safer immunomodulatory biologics. Nature Rev. Drug Discov. 12, 306-324 (2013).
Fink, M. P. & Warren, H. S. Strategies to improve drug development for sepsis. Nature Rev. Drug Discov. 13, 741-758 (2014).
Burmester, G. R., Feist, E. & Dorner, T. Emerging cell and cytokine targets in rheumatoid arthritis. Nature Rev. Rheumatol. 10, 77-88 (2014).
Palladino, M. A., Bahjat, F. R., Theodorakis, E. A. & Moldawer, L. L. Anti-TNF-? therapies: the next generation. Nature Rev. Drug Discov. 2, 736-746 (2003).
Bonilla-Hernan, M. G., Miranda-Carus, M. E. & Martin-Mola, E. New drugs beyond biologics in rheumatoid arthritis: the kinase inhibitors. Rheumatol. 50, 1542-1550 (2011).
Kumar, N., Goldminz, A. M., Kim, N. & Gottlieb, A. B. Phosphodiesterase 4-targeted treatments for autoimmune diseases. BMC Med. 11, 96 (2013).
Maurice, D. H. et al. Advances in targeting cyclic nucleotide phosphodiesterases. Nature Rev. Drug Discov. 13, 290-314 (2014).
Schett, G., Elewaut, D., McInnes, I. B., Dayer, J. M. & Neurath, M. F. How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nature Med. 19, 822-824 (2013).
He, M. M. et al. Small-molecule inhibition of TNF-?. Science 310, 1022-1025 (2005).
Tang, W. et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332, 478-484 (2011).
Issuree, P. D. et al. iRHOM2 is a critical pathogenic mediator of inflammatory arthritis. J. Clin. Invest. 123, 928-932 (2013).
Moss, M. L., Sklair-Tavron, L. & Nudelman, R. Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nature Clin. Pract. Rheumatol. 4, 300-309 (2008).
Richter, F. et al. Antagonistic TNF receptor one-specific antibody (ATROSAB): receptor binding and in vitro bioactivity. PLoS ONE 8, e72156 (2013).
Slifman, N. R., Gershon, S. K., Lee, J. H., Edwards, E. T. & Braun, M. M. Listeria monocytogenes infection as a complication of treatment with tumor necrosis factor ?-neutralizing agents. Arthritis Rheum. 48, 319-324 (2003).
Ramos-Casals, M. et al. Autoimmune diseases induced by TNF-targeted therapies: analysis of 233 cases. Medicine (Baltimore). 86, 242-251 (2007).
Lin, J. et al. TNF? blockade in human diseases: an overview of efficacy and safety. Clin. Immunol. 126, 13-30 (2008).
van de Putte, L. B. et al. Efficacy and safety of the fully human anti-tumour necrosis factor ? monoclonal antibody adalimumab (D2E7) in DMARD refractory patients with rheumatoid arthritis: a 12 week, Phase II study. Ann. Rheum. Dis. 62, 1168-1177 (2003).
le Blay, P., Mouterde, G., Barnetche, T., Morel, J. & Combe, B. Short-term risk of total malignancy and nonmelanoma skin cancers with certolizumab and golimumab in patients with rheumatoid arthritis: metaanalysis of randomized controlled trials. J. Rheumatol. 39, 712-715 (2012).
Mease, P. J. Certolizumab pegol in the treatment of rheumatoid arthritis: a comprehensive review of its clinical efficacy and safety. Rheumatol. 50, 261-270 (2011).
Desai, D. & Brightling, C. TNF-? antagonism in severe asthma? Recent Pat. Inflamm. Allergy Drug Discov. 4, 193-200 (2010).
Langford, C. A. Drug insight: anti-tumor necrosis factor therapies for the vasculitic diseases. Nature Clin. Pract. Rheumatol. 4, 364-370 (2008).
van Belle, T. L., Coppieters, K. T. & von Herrath, M. G. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol. Rev. 91, 79-118 (2011).