
Tumour necrosis factor (TNF) is one of the most inten-
sively studied cytokines of the immune system. Decades 
of work has established that TNF is a central player 
within a complicated network of cytokines, and that it 
regulates not only pro-inflammatory responses but also 
processes as diverse as cellular communication, cell dif-
ferentiation and cell death. It is due to these far-reaching 
and important regulatory functions of TNF that altera-
tions to its biology have been associated with multiple 
diseases, including autoimmunity and cancer.

TNF activity was described by Carswell in 1975, and 
the molecule was later cloned, purified and initially char-
acterized by Aggarwal and colleagues in the mid-1980s1–3. 
These important discoveries were the first steps in char-
acterizing two prominent protein superfamilies: the TNF 
superfamily (TNFSF) and the TNF receptor superfamily 
(TNFRSF). To date, 19 ligands and 29 receptors of the 
TNFSF and TNFRSF, respectively, have been identified2.  
A characteristic hallmark of members of the TNFSF is 
their ability to promote pro-inflammatory signalling3.

Of all of the members of the TNFSF and TNFRSF, TNF 
and its two receptors — TNFR1 and TNFR2 — are the 
best characterized. TNF is initially expressed as a trimeric 
type II transmembrane protein. This can be cleaved by 
the metalloproteinase TNF-converting enzyme (TACE; 
also known as ADAM17), which is controlled by inactive 
rhomboid protein 2 (iRHOM2), to give rise to soluble 
extracellular TNF4–9. The expression of membrane-bound 
TNF and the generation of its soluble form are tightly regu-
lated processes that occur in response to diverse stimuli. 
Soluble TNF can bind to either TNFR1 or TNFR2, which 

differ in their structure and expression pattern, as well as 
in the signalling pathways that they induce once they are 
engaged10. Although TNFR1 is expressed by almost every 
mammalian cell type, TNFR2 expression is essentially 
restricted to immune cells and endothelial cells10. The 
binding of TNF to either TNFR1 or TNFR2 can ultimately 
activate the transcription factor nuclear factor-κB (NF‑κB), 
but the signalling cascades that lead from each receptor 
to NF‑κB activation are markedly different. These com-
plexities, together with the diverse regulation of the expres-
sion of TNF itself, result in finely tuned, cell type-specific 
responses to TNF. In this Review, we summarize the cur-
rent state of knowledge of TNFR signalling and explain 
how this knowledge can be used to design novel therapies.

TNF signalling in NF‑κB activation
TNFR1 and TNFR2 signalling elements. The extracellular 
domains of both TNFR1 and TNFR2 are rich in cysteine 
and able to bind to the same TNF ligand. However, their 
intracellular domains are strikingly different. TNFR1 
contains a cytoplasmic ‘death domain’, which is a con-
served sequence of 80 amino acids that forms a distinc-
tive fold11,12. This death domain enables TNFR1 to recruit 
the adaptor molecule TNFR1‑associated death domain 
protein (TRADD), which is a crucial component of the 
TNFR1 signalling complex13 (FIG. 1). By contrast, TNFR2 
lacks the cytoplasmic death domain sequence and recruits 
TNFR-associated factor 1 (TRAF1) and TRAF2 rather 
than TRADD12–14. Both TNFR1–TRADD signalling and 
TNFR2 signalling through TRAF1 and TRAF2 can lead 
to NF‑κB activation, but whereas TNFR2 engagement 
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promotes cell survival via this pathway, TNFR1–TRADD 
signalling can result in either cell survival or cell death 
depending on downstream signalling events and cellu-
lar context. It is still not entirely clear how TNFR1 and 
TNFR2 signalling are regulated, apart from through the 
differential expression patterns of TNFR1 and TNFR2 
themselves. In many cases, immune cells that express 
TNFR2 also express TNFR1, and this makes predicting 
the outcome of TNF-mediated signalling a challenge. It 
has been shown that the relative levels of TNFR1 and 
TNFR2 on the surface of such cells and their activation 
status in a specific context have an important role in deter-
mining cell fate15,16. However, crosstalk between these 
receptors is also possible, and the past decade has seen the 
formulation of several new concepts that have broadened 
our view of the effects of TNF-induced signalling.

Upon engagement by TNF, TNFR1 translocates to 
lipid rafts in the plasma membrane, and this is crucial 
for NF‑κB activation17. The binding of TNF to the pre-
assembled TNFR1 induces a conformational change 

in the cytoplasmic domain of the receptor that ena-
bles the recruitment of TRADD, which in turn recruits 
receptor-interacting serine/threonine-protein kinase 1 
(RIPK1)13,18,19. Once bound together, TNFR1, TRADD 
and RIPK1 initiate the assembly of TNFR1 complex I, 
which directs downstream signalling events.

The next step in complex I formation is the recruit-
ment of TRAF2, which binds to the amino‑terminal 
TRAF-binding domain of TRADD20. At this point, the 
signalling cascades downstream of TNFR1–TRADD–
RIPK1–TRAF2 and TNFR2–TRAF2 become similar 
again, but the binding of TRAF2 to TNFR2 is much 
weaker than that of TRAF2 to TRADD21. This differ-
ence suggests that an affinity-based regulatory mecha-
nism may exist to control these two TNF-induced 
pathways. It is tempting to speculate that, at a certain 
TNF concentration, TNFR2 might act as a signalling 
dampener to attenuate or alter the strength or out-
come of signalling by TNFR1 in the same cell21–23. 
Downstream of this, TRAF2 binds to cellular inhibitor 
of apoptosis protein 1 (cIAP1; also known as BIRC2) 
and cIAP2 (also known as BIRC3). However, studies  
in mice suggest that TRADD, TRAF2, RIPK1 and the 
cIAPs are all important, but not indispensable, for 
TNFR1‑induced NF‑κB activation24–30.

Role of ubiquitylation. Post-translational modification 
of the proteins involved in TNF signalling cascades has 
a major role in determining TNF-induced outcomes. 
The primary modification relevant to our discussion 
here is ubiquitylation, which involves the covalent 
linkage of the highly conserved ubiquitin protein to 
a target protein. The molecular details of ubiquityla-
tion have been reviewed extensively elsewhere31,32. 
Briefly, it is a hierarchical three-step process involving 
E1 ubiquitin-activating, E2 ubiquitin-conjugating and 
E3 ubiquitin ligase enzymes attaching defined strings 
of ubiquitin molecules to target proteins to form  
polyubiquitylated conjugates33. The length of the 
attached ubiquitin chain may alter the fate of the tar-
get protein, as may the nature of the covalent bond 
linkage between ubiquitin proteins itself. These poly-
ubiquitin linkages usually involve specific lysine or 
methionine residues. For TNF-induced signalling, 
polyubiquitylation via K11, K48 or K63 branched 
linkages, or alternatively via M1 linear linkages, has 
a predominant role in determining target protein fate. 
For example, proteins that are attached to K48‑linked 
polyubiquitin chains are targeted for degradation31; 
such destruction of a signalling mediator contributes 
to the shutdown of intracellular signalling. By con-
trast, K63- and M1‑linked polyubiquitylation events 
reinforce protein scaffolding and cellular activation. 
Both degradative and activating functions have been 
described for K11‑linked polyubiquitin chains32.

With respect to TNF-induced NF‑κB activation, it 
was originally thought that the creation of a K63‑linked 
ubiquitylated scaffold containing RIPK1 was crucial for 
recruiting downstream signalling mediators. Both cIAP1 
and cIAP2 were shown to add K63‑linked polyubiquitin 
chains to RIPK1 at its acceptor site K377 (REFS 34,35), 
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Figure 1 | TNFR1 complex I contains ubiquitylated RIPK1 and activates nuclear 
factor‑κB, JNK and p38 signalling.  Following the binding of tumour necrosis factor 
(TNF) to TNF receptor 1 (TNFR1), TNFR1 binds to TNFR1‑associated death domain 
protein (TRADD), which recruits receptor-interacting serine/threonine-protein kinase 1 
(RIPK1), TNFR-associated factor 2 (TRAF2) or TRAF5 and cellular inhibitor of apoptosis 
protein 1 (cIAP1) or cIAP2 to form TNFR1 signalling complex I. TNFR2 binds to TRAF1 or 
TRAF2 directly to recruit cIAP1 or cIAP2. Both cIAP1 and cIAP2 are E3 ubiquitin ligases 
that add K63‑linked polyubiquitin chains to RIPK1 and other components of the 
signalling complex. The ubiquitin ligase activity of the cIAPs is needed to recruit the 
linear ubiquitin chain assembly complex (LUBAC), which adds M1‑linked linear 
polyubiquitin chains to RIPK1. K63‑polyubiquitylated RIPK1 recruits TGFβ-activated 
kinase 1 and MAP3K7‑binding protein 2 (TAB2) and TAB3 and TGFβ-activated kinase 1 
(TAK1), which activate signalling mediated by JUN N‑terminal kinase (JNK) and p38, as 
well as the IκB kinase (IKK) complex. The IKK complex then activates nuclear factor-κB 
(NF‑κB) signalling, which leads to the transcription of anti-apoptotic factors — such as 
the long isoform of FLICE-like inhibitory protein (FLIP

L
) and BCL‑XL

 
(also known as 

BCL2L1) — that promote cell survival. NEMO, NF‑κB essential modulator.
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and TRAF2 and TRAF5 were also thought to function as 
E3 ligases that attached K63‑linked polyubiquitin chains 
to RIPK1 (REF. 36). However, whether TRAF2 truly has 
an E3 ligase function is the subject of much debate37–39, 
leaving cIAP1 and cIAP2 as the most likely candidates. 
Interestingly, some cells (for example, mouse embryonic 
fibroblasts) can recruit RIPK1 to TNFR1 independently 
of TRADD, but RIPK1 cannot be ubiquitylated because 
recruitment of the ubiquitin ligases cIAP1 and cIAP2  
via TRAF2 requires TRADD26,27.

In addition to controversy about the enzyme 
responsible, the relevance of the K63 linkage has been 
questioned. An elegant ubiquitin-replacement study 
showed that K63‑linked polyubiquitin chains cannot be 
solely responsible for TNF-induced NF‑κB activation, 
implying the involvement of other linkages or mecha-
nisms40. Indeed, it was subsequently demonstrated that, 
in addition to K63‑linked ubiquitin chains, RIPK1 
simultaneously contains K11-, K48- and M1‑linked 
polyubiquitin chains41–43.

A major step in clarifying the role of ubiquitylation 
in TNF signalling was the identification and charac-
terization of the linear ubiquitin chain assembly com-
plex (LUBAC)41,44. LUBAC consists of three proteins:  
haeme-oxidized IRP2 ubiquitin ligase 1 (HOIL1; 
also known as RBCK1), HOIL1‑interacting protein 
(HOIP; also known as RNF31) and SHANK-associated 
RH domain-interacting protein SHARPIN41,42,45–47. 
Interestingly, the recruitment of LUBAC to complex I 
depends on the K63‑polyubiquitylation activity of 
cIAP1 and cIAP2. LUBAC association with the TNFR 
signalling complex is not strictly RIPK1 dependent 
(RIPK1 is a prominent target of cIAP1 and cIAP2), but 
is increased in the presence of RIPK1. Once recruited, 
LUBAC stabilizes complex I by catalysing the attach-
ment of a linear M1‑linked polyubiquitin chain, usually 
to RIPK1 (REFS 18,41,45). The relevance of K63‑linked as 
opposed to M1‑linked linear polyubiquitylation events 
in TNFR1 signalling remains under debate. It is clear 
that both processes are involved in TNF-induced signal 
transduction, but their specific and relative contribu-
tions are not entirely defined. Nevertheless, it is currently 
generally accepted that RIPK1 is a central molecular 
switch in complex I, and that all downstream signalling 
by this complex depends on the ubiquitylation status of 
RIPK1 (see below).

Role of NF-κB essential modulator. Ubiquitin chains 
attached to RIPK1 by LUBAC recruit the IκB kinase (IKK) 
complex to the TNFR1 signalling core41,44. The IKK com-
plex consists of three subunits: two kinases called IKKα and 
IKKβ, and the regulatory subunit NF‑κB essential modu-
lator (NEMO; also known as IKKγ)48,49. Once activated, 
IKK phosphorylates NF-κB inhibitor-α (IκBα), which 
binds to NF‑κB during steady-state conditions and keeps 
it inactive in the cytoplasm. Upon its phosphorylation, 
IκBα is targeted for K48‑linked ubiquitylation followed 
by degradation, which releases NF‑κB from suppres-
sion. Newly freed NF‑κB translocates to the nucleus and 
activates the transcription of its numerous target genes, 
which are involved in cell survival and proliferation48,49.  

The details of IKK-driven NF‑κB activation have been 
previously summarized in two comprehensive reviews 
and will not be discussed further here48,49.

Membrane-proximal recruitment of NEMO to  
ubiquitylated RIPK1 is crucial for IKK activation and 
thus NF‑κB activation, as has been particularly well 
demonstrated for the T cell receptor-dependent path-
way of NF‑κB activation in T cells50. Accordingly, muta-
tions in the ubiquitin-binding domain of NEMO blunt 
NF‑κB activation in response to TNF34,51. In binding to 
ubiquitylated RIPK1, NEMO shows significantly higher 
affinity for M1‑linked linear polyubiquitin chains than 
for K63‑linked polyubiquitin chains52,53. In addition, 
NEMO can bind to K11‑linked polyubiquitin chains 
attached to RIPK1 (REF. 43). As a result, NEMO recruit-
ment might be modulated by the relative concentrations 
of the various types of polyubiquitylated chains present 
within complex I. The various types (K11-, K48-, K63- 
and M1‑linked) and concentrations of polyubiquitin 
chains attached to RIPK1 may permit multiple coopera-
tive or parallel possibilities for recruiting NEMO. This 
mechanism opens up interesting options for fine-tuning 
ubiquitin-dependent signalling to modulate the activity 
of recruited targets, as one ubiquitin linkage might be 
more dominant in a specific pathway. Such factors might 
explain why K63‑linked polyubiquitin chains seem to be 
dispensable for TNF-mediated NF‑κB activation but not 
for interleukin‑1β (IL‑1β)‑mediated NF‑κB activation40.

NEMO itself may undergo M1‑linked linear poly-
ubiquitylation, but it is unclear when or where this 
modification occurs42,44. Based on signalling hierarchy, it 
seems unlikely that M1‑linked linear polyubiquitylation 
of NEMO precedes its recruitment to the TNFR1 signal-
ling core. In any case, the polyubiquitin chains present at 
NEMO and RIPK1 are bound by the ubiquitin-binding 
protein TGFβ-activated kinase 1 and MAP3K7‑binding 
protein 2 (TAB2) or TAB3, which interact with TGFβ-
activated kinase 1 (TAK1). This binding is a crucial step 
in IKK activation because TAK1 is the direct initiator of 
this process34,54,55. TAK1 also phosphorylates mitogen-
activated protein kinase kinases (MAPKKs), which  
trigger the activation of the JUN N‑terminal kinase 
(JNK) and p38 pathways54–56.

Intriguingly, the TAB–TAK1 complex binds to 
K63‑linked polyubiquitin chains of RIPK1 (FIG. 1) with 
higher affinity than to M1‑linked polyubiquitin chains34,57. 
To make matters more complex, there is recent evidence 
from studies of IL‑1β‑dependent signalling that hybrid 
K63- and M1‑linked polyubiquitin chains may exist, 
which can recruit NEMO using the M1‑linked poly
ubiquitin portion and simultaneously recruit TAB–TAK1 
using the K63‑linked polyubiquitin portion58. Such a 
mechanism would allow the IKK complex to efficiently 
colocalize with and become activated within TNFR1 
complex I by binding to the same polyubiquitin chain. 
However, to date, these hybrid polyubiquitin chains have 
only been detected in the IL‑1β‑dependent signalling 
pathway58. It will be interesting to determine whether 
this mechanism operates in other pathways — particu-
larly in TNF-mediated signalling — and whether hybrid  
polyubiquitin chains can in fact be attached to RIPK1.
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TNF signalling in apoptosis
TNF is a very versatile cytokine with pleiotropic func-
tions in immunity, inflammation and cell death3. 
Interestingly, the mechanism by which these various 
functions of TNF are mediated is not just a simple matter 
of binding to different receptors. In fact, the binding of 
TNF to TNFR1 can induce either cell survival or differ-
ent forms of cell death; therefore, the regulation of TNF 
signal transduction is a constant balancing act between 
these opposing functions.

Classical apoptosis. As described above, TNF-induced 
TNFR1 signalling leading to the NF‑κB activation that 
supports cell survival and inflammation is mediated 
by the membrane-bound TNFR1–TRADD–RIPK1–
TRAF2 signalling core known as complex I59. However, 
based on its structure, TNFR1 is classified as a death 
receptor and classical apoptosis was shown to occur 
upon TNF binding to TNFR1 (REFS 2,3). The signalling 
mediators of the classical apoptotic pathway were first 
defined by studying the death receptor FAS (also known 
as CD95 and TNFRSF6)11. The death domain fold in the 
cytoplasmic portion of the FAS protein was shown to 
bind to FAS-associated death domain protein (FADD); 
this is the first step in the formation of a membrane-
bound death-inducing signalling complex (DISC). 
The death effector domain of FADD then recruits pro-
caspase 8 to form a homodimer that autocatalytically 
removes its pro-domains, stabilizing an active confor-
mation and resulting in the release of an activated cas-
pase 8 homodimer into the cytoplasm. This activated 
caspase 8 molecule uses its proteolytic activity to target 
and cleave numerous intracellular substrates, including  
the executioner caspases that drive classical apopto-
sis11,60. Depending on the situation, this cytoplasmic 
apoptotic signalling can be amplified or modified by 
the mitochondrial cell death pathway, which has been 
reviewed elsewhere61.

In contrast to FAS-mediated classical apoptosis, the 
apoptotic cascade initiated by TNF binding to TNFR1 
is much more complicated. The process can be medi-
ated by either one of two TNFR1 signalling complexes 
known as TNFR1 complex IIa and complex IIb. The ini-
tial assembly of these protein complexes upon TNFR1 
stimulation occurs proximal to the membrane, but they 
translocate to the cytosol to continue further complex 
formation. As well as the apoptosis mediators men-
tioned above, the cytosolic complexes IIa and IIb contain  
additional components (FIG. 2).

RIPK1 as a central molecular switch. An important 
molecular switch that determines whether TNF–
TNFR1 signalling mediates cell survival or apoptosis 
seems to be the ubiquitylation status of RIPK1. Not only 
is the polyubiquitylation of RIPK1 bound to TRADD 
essential for NF‑κB activation (as discussed above), 
but it also prevents the formation of complex IIa and 
complex IIb and thus death induction, such that the 
cell survives34,35,62,63. Conversely, when RIPK1 is not 
ubiquitylated, TNF-driven NF‑κB signalling is turned 
off so that TNF-driven apoptotic signalling dominates 

and the cell dies. Non-ubiquitylated RIPK1 leads to 
dissociation of a RIPK1‑containing complex from the 
membrane and the formation of protein complexes that 
promote cell death.

Several ubiquitin-modifying proteins can act on 
RIPK1. Both the ubiquitin-modifying enzyme A20 
(also known as TNFAIP3) and the deubiquitylat-
ing enzyme Cezanne (also known as OTUD7B) can 
remove K63‑linked polyubiquitin chains from RIPK1 
(REFS 64,65). Subsequently, A20 and/or the E3 ubiqui-
tin ligase caspase regulator 2 (CARP2; also known as 
RFFL) add K48‑linked polyubiquitin chains to RIPK1, 
which triggers its degradation and thus the suppres-
sion of TNF-induced NF‑κB signalling65,66. In addi-
tion, A20 can use its carboxy‑terminal zinc finger 7 
domain to bind to M1‑linked polyubiquitin chains, 
thereby preventing the binding of LUBAC to NEMO 
and blocking TNF‑induced LUBAC-mediated NF‑κB 
activation67.

Another deubiquitylating enzyme that acts on 
RIPK1 and is crucial for shutting down TNF-induced 
NF‑κB activation is cylindromatosis (CYLD)68,69. CYLD 
associates with complex I via TRAF2 and removes both 
K63- and M1‑linked polyubiquitin chains from target 
proteins32,57,68,70. Recent evidence suggests that CYLD 
removes K63- and M1‑linked polyubiquitin chains 
from RIPK1, causing the deubiquitylated RIPK1 to 
dissociate from the membrane-bound TNFR1 sig-
nalling core68. This freed and deubiquitylated RIPK1 
then assembles in the cytosol with TRADD, FADD, a 
pro-caspase 8 homodimer, and a heterodimer of pro-
caspase 8 and the long isoform of FLICE-like inhibi-
tory protein (FLIPL; also known as the long isoform 
of CFLAR) to form complex IIa (FIG. 2). It is important 
to note that although RIPK1 initiates the assembly of 
complex IIa, RIPK1 is inactivated by a FLIPL–pro-
caspase 8 heterodimer in order to proceed with the 
apoptotic programme (see below). Once complex 
IIa is assembled, pro-caspase 8 undergoes autocata-
lytic cleavage and activation, thereby releasing active  
caspase 8 into the cytosol to trigger the execution of  
the classical apoptotic programme59,62.

Role of cIAPs and formation of complex IIb. An alter-
native independent complex IIb that also promotes 
classical apoptosis is assembled under conditions in 
which the E3 ligases cIAP1 and cIAP2 are depleted68 
(FIG. 2). The degradation or depletion of cIAPs reduces 
or prevents RIPK1 ubiquitylation36,68. This non- 
ubiquitylated RIPK1 soon dissociates from membrane-
bound complex I. In a process that depends on the 
kinase activity of RIPK1 but does not involve TRADD 
recruitment, non-ubiquitylated RIPK1 assembles with 
RIPK3, pro-caspase 8 and FLIPL to form complex IIb, 
which then induces apoptosis in a manner similar to 
complex IIa68,71. As complex IIb is nucleated by RIPK1 
and does not require TRADD, it is also known as the 
ripoptosome. Similarly to complex IIa, cleavage and 
inactivation of cytosolic RIPK1 or RIPK3 (that is not 
incorporated into complex IIb) is essential for the  
apoptotic cascade (see below).
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Figure 2 | TNF-induced apoptosis requires non-ubiquitylated RIPK1 and active caspases.  The formation of cytosolic 
tumour necrosis factor receptor 1 (TNFR1) complex IIa and complex IIb depends on non-ubiquitylated receptor-interacting 
serine/threonine-protein kinase 1 (RIPK1). For the formation of complex IIa, ubiquitylated RIPK1 in complex I is 
deubiquitylated by cylindromatosis (CYLD). This deubiquitylated RIPK1 dissociates from the membrane-bound complex 
and moves into the cytosol, where it interacts with TNFR1‑associated death domain protein (TRADD), FAS-associated death 
domain protein (FADD), pro-caspase 8 and the long isoform of FLICE-like inhibitory protein (FLIP

L
) to form complex IIa.  

By contrast, complex IIb is formed when the RIPK1 in complex I is not ubiquitylated in the first place owing to conditions  
that have resulted in the depletion of cellular inhibitor of apoptosis proteins (cIAPs; which normally ubiquitylate RIPK1).  
This non-ubiquitylated RIPK1 dissociates from complex I, moves into the cytosol, and assembles with FADD, pro-caspase 8, 
FLIP

L
 and RIPK3 (but not TRADD) to form complex IIb. Formation of complex IIb, which has also been named the 

ripoptosome, depends on the kinase activity of RIPK1. In both complex IIa and complex IIb, pro-caspase 8 forms both 
homodimers and a heterodimer with FLIP

L
. For either complex IIa or complex IIb to prevent necroptosis, both RIPK1 and 

RIPK3 must be inactivated by the cleavage activity of the pro-caspase 8–FLIP
L
 heterodimer or fully activated caspase 8.  

The pro-caspase 8 homodimer generates active caspase 8, which is released from complex IIa and complex IIb. This active 
caspase 8 in the cytosol then carries out cleavage reactions to activate downstream executioner caspases and thus induce 
classical apoptosis. IKK, IκB kinase; JNK, JUN N‑terminal kinase; LUBAC, linear ubiquitin chain assembly complex;  
NEMO, NF‑κB essential modulator; NF‑κB, nuclear factor-κB; TAB, TGFβ-activated kinase 1 and MAP3K7‑binding protein; 
TAK1, TGFβ-activated kinase 1; TRAF, TNFR-associated factor.
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The degradation of cIAP1 or cIAP2 can be induced 
by the release of second mitochondria-derived acti-
vator caspase (SMAC; also known as DIABLO) 
from the mitochondria72. In an experimental setting, 
SMAC mimetics bind to the baculovirus IAP repeat 
domain of cIAP1 and cIAP2 and thereby turn on their 
E3 ubiquitin ligase activity73. This action triggers auto-
ubiquitylation of cIAP1 and cIAP2, followed by their 
degradation74–76. Interestingly, this degradation of cIAP1 
and cIAP2 by SMAC mimetics also leads to the stabili-
zation of NF‑κB‑inducing kinase (NIK; also known as 
MAP3K14)76. NIK is best known as a central inducer 
of the non-canonical NF‑κB signalling pathway. 
Consequently, stabilization of NIK and the dissociation of  
non-ubiquitylated RIPK1 from complex I (as a result  
of cIAP1 and cIAP2 depletion) shifts the balance in the 
cell from canonical to non-canonical NF‑κB signal-
ling75,77. This latter pathway also induces autocrine TNF 
signalling, which stimulates and facilitates the formation 
of complex IIb and thus induces apoptosis68,78.

The dual survival role of FLIPL. Any push towards 
TNF-induced apoptosis is most often balanced by TNF-
induced NF‑κB activation79. In cells with sufficient com-
plex I and NF‑κB activity, canonical NF‑κB signalling 
induces the upregulation of FLIPL, high levels of which 
exert potent inhibition of caspase 8 activation and, sub-
sequently, apoptosis triggered by death receptor engage-
ment59,80–82. Increased non-canonical NF‑κB signalling 
can also lead to elevated FLIPL expression83. FLIPL is 
thus thought to be a key player that keeps the formation 
of the pro-apoptotic complex IIa and complex IIb in 
check59,68,83. Moreover, as FLIPL expression is induced by 
NF‑κB signalling82, the inhibition of NF‑κB activation 
or the functional inactivation of its targets is needed to 
induce apoptosis via complex IIa59,68. However, it should 
be noted that the anti-apoptotic programme of NF‑κB is 
unlikely to rely solely on FLIPL upregulation as NF‑κB 
is known to control the expression of multiple anti-
apoptotic factors83. In addition, the synthesis of FLIPL 
is controlled not only by NF‑κB‑mediated regulation of 
gene expression but also at the level of protein stabil-
ity. The stability of FLIPL is directly affected by com-
plex I‑mediated activation of JNK; JNK activates the 
E3 ubiquitin ligase ITCH, which mediates K48‑linked 
polyubiquitylation and proteasomal degradation  
of FLIPL (REF. 84). This mechanism influences cellular 
FLIPL levels in response to complex I formation and 
stress signalling.

Although high levels of FLIPL inhibit apoptosis, FLIPL 
is in fact vital for the parallel suppression of the necrotic 
cell death pathway. FLIPL resembles pro-caspase 8 in 
structure but lacks the catalytic domain11,80. Therefore, 
FLIPL can form a heterodimer with pro-caspase 8, pre-
venting its homodimerization and inhibiting caspase 8 
activation. Instead, the FLIPL–pro-caspase 8 hetero
dimer displays enzymatic activity that is different 
from that of the activated caspase 8 homodimer, and it 
cleaves only a subset of its substrates85. The formation 
of a FLIPL–pro-caspase 8 heterodimer in complex IIa 
and complex IIb or full activation of caspase 8 is crucial 

for cleaving and inactivating RIPK1 and RIPK3 (as well 
as CYLD in complex IIa), which inhibits the induction 
of the necrotic cell death pathway (see below)85–87. This 
has led to the intriguing hypothesis that the function of 
pro-caspase 8 is not exclusively linked with apoptosis, 
but that it also mediates survival by suppressing the 
necrotic cell death pathway86. However, more convincing  
data need to be provided to fully support a role for the 
FLIPL–pro-caspase 8 heterodimer and its substrates in 
preventing necrosis.

Compared with complex IIa, the situation for com-
plex IIb-mediated cell death seems to even be more 
complicated owing to the existence of and regulation 
by three different FLIP isoforms: FLIPL, and the two 
short forms, FLIPS and FLIPR (REFS 81,88–90). Enforced 
FLIPL expression prevents the assembly of complex 
IIb, whereas overexpression of FLIPS (and potentially 
that of the closely related FLIPR) facilitates complex IIb 
formation71,91. All FLIP isoforms block the apoptotic 
programme of complex IIb, but FLIPS actively drives 
another pro-inflammatory cell death pathway, which  
is discussed in the next section.

TNF signalling in necroptosis
Survival versus death decision making. Although 
FLIPL is involved in regulating apoptosis, FLIPS actively 
drives another TNF-triggered cell death pathway that 
has been named regulated necrosis, or necroptosis91. 
Necroptosis is a pro-inflammatory form of cell death 
in which the initiating events are caspase independent. 
Unlike the contained self-destruction of an apoptotic 
cell, a necroptotic cell displays swelling of cellular orga-
nelles, rupture of the cell membrane and uncontrolled  
release of cellular contents into the surrounding tis-
sue, followed ultimately by cell death92,93. At a molecu-
lar level, RIPK1 is the pivotal molecule in a complex 
and versatile signalling pathway that decides whether 
TNF–TNFR1 engagement will result in NF‑κB activa-
tion (cell survival), apoptosis (‘tidy’ programmed cell 
death) or necroptosis (‘messy’ programmed cell death). 
As previously mentioned, if high levels of ubiquitylated 
RIPK1 are present, then membrane-bound complex I is 
formed, NF‑κB activation proceeds and the cell survives. 
If the cytosolic complexes IIa and IIb have assembled, 
and deubiquitylated RIPK1 and RIPK3 are cleaved by 
an active FLIPL–pro-caspase 8 heterodimer, then other 
caspases become activated, apoptosis occurs and the cell 
dies a contained death59,68,74,75,86. However, if deubiquity-
lated RIPK1 is present but caspases are inactivated, such 
that RIPK1 and RIPK3 cannot be cleaved by a FLIPL–
pro-caspase 8 heterodimer, the cell death programme 
switches from apoptosis to necroptosis62,94–97. This might 
explain why FLIPS promotes necroptosis but FLIPL does 
not. Similarly to FLIPL, FLIPS can also form a hetero
dimer with pro-caspase 8. However, based on structural 
differences, these FLIPS–pro-caspase 8 heterodimers are 
completely catalytically inactive and cannot inactivate 
RIPK1 or RIPK3 (REFS 91,98). This would serve as a valid 
hypothesis as to why the enforced expression of FLIPS, 
but not that of  FLIPL, is associated with the RIPK1- and 
RIPK3‑dependent necrotic cell death pathway.
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Roles of RIPK1 and RIPK3. Necroptosis depends mainly 
on the presence of significant levels of non-ubiquitylated 
RIPK1 and RIPK3 (REF. 99) (FIG. 3). Indeed, the level  
of RIPK3 expression in a cell largely determines its pro-
pensity to undergo necroptosis rather than apoptosis62. 
Similarly to RIPK1, RIPK3 belongs to the RIP family of 
serine-threonine kinases100,101. However, in contrast to 
RIPK1, RIPK3 is dispensable for TNF-induced NF‑κB 
activation29,102. Instead, the interaction of multiple pro-
tein complexes of RIPK3 with non-ubiquitylated or 
deubiquitylated RIPK1 via their RHIM domains initiates 
the formation of a cytosolic amyloid signalling protein 
complex that has been named the necrosome99,103.

Proper necrosome formation is dependent on the 
kinase activities of RIPK1 and RIPK3 in combination 
with caspase inhibition63,103,104. Consequently, RIPK1 and 
RIPK3 kinase activity is negatively regulated by caspase-
mediated cleavage, which removes the kinase domains 
of RIPK1 and RIPK3 (REF. 105). Accordingly, pharmaco-
logical inhibition of RIPK1 and RIPK3 kinase activities 
with necrostatin 1 abolishes necroptosis104. This crucial 
interplay between the inhibition of caspase activity and 
RIPK1- and RIPK3‑mediated necrotic cell death has been 
clearly demonstrated by the finding that genetic deletion 
of RIPK1 and/or RIPK3 rescues the lethality observed 
in caspase 8‑deficient or FADD-deficient mice86,87,106–108.

Role of SHARPIN. Necrosomes can also be formed 
when TNF stimulation, either in the presence of CYLD 
or in the absence of cIAP2, leads to the dissociation of 
non-ubiquitylated or deubiquitylated RIPK1 from com-
plex I under conditions in which caspases have been 
inactivated. As noted above, LUBAC ubiquitylates 
RIPK1 via M1‑linked linear linkages41, but whether 
M1‑linked polyubiquitin chains of RIPK1 must be 
removed before necroptosis can occur is not entirely 
clear. Recent data indicate that LUBAC negatively affects 
necroptosis109. Deficiency of SHARPIN, a component of 
LUBAC, leads to instability of the remaining LUBAC 
components HOIL1 and HOIP, and thereby limits 
M1‑linked polyubiquitylation42,46,47. In vivo, a naturally 
occurring mutation that ablates SHARPIN expression 
in the cpdm strain of mice results in chronic prolifera-
tive dermatitis110. This dermatitis can be prevented by 
crossing cpdm mutants with Tnf−/− or Tnfr1−/− mice, 
which indicates that this inflammatory disease is TNF 
dependent42,111. Moreover, the absence of SHARPIN in 
cpdm mice increases cell death in the skin, and the cell 
death that occurs at this site resembles necroptosis42. 
Accordingly, the inflammatory phenotype of cpdm mice 
can be rescued by crossing this strain with a mutant 
mouse expressing a kinase-inactive RIPK1 protein or 
with RIPK3‑null or mixed lineage kinase domain-like 
(MLKL)-null mice111,112. However, a recent report shows 
that caspase 8 heterozygosity delays the onset of the 
inflammatory disease induced by the loss of SHARPIN, 
which indicates that, to a certain degree, apoptotic death 
also seems to be involved111. Taken together, these find-
ings suggest that SHARPIN and thus M1‑linked linear 
polyubiquitylation are involved as negative regula-
tors of the RIPK1‑dependent necroptosis signalling 
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pathway. However, additional work on the role of linear  
polyubiquitylation in necroptosis is needed because 
SHARPIN deficiency suppresses, but does not entirely 
abrogate, M1‑linked polyubiquitylation42,46,47. When 
M1‑linked linear polyubiquitylation is completely 
inhibited in mice by ablation of HOIP — the catalytic 
subunit of LUBAC — embryonic lethality is triggered 
at mid-gestation113. Molecular analysis of these embryos 
has revealed the presence of an aberrant preassembled 
complex II that leads to a form of TNFR1‑mediated cell 
death with both necrotic and apoptotic characteristics113. 
This result emphasizes the importance of M1‑linked  
linear polyubiquitylation as a regulator that balances 
apoptosis versus necroptosis.

MLKL: a crucial effector of necroptosis. It was recently 
discovered that treatment of human cells with the small 
molecule necrosulfonamide blocks necroptosis114. 
Necrosulfonamide targets the human form of the pseu-
dokinase MLKL114. A similar block in TNF-induced 
necroptosis can be achieved by knocking down MLKL 
expression using RNA interference115. The importance 
of MLKL in TNF signalling that leads to necroptosis 
has been confirmed by studies of a gene-deficient 
mouse model, which showed that ablation of Mlkl 
abrogates cellular necroptosis but not apoptosis116,117. 
These data further support the idea that the apoptotic 
and necrotic cell death pathways are separated.

Within the necrosome, serine phosphorylation of 
RIPK3 is crucial for recruiting MLKL, but MLKL is dis-
pensable for the stabilization of this complex115,118,119. In 
addition, although the pseudokinase domain of MLKL 
binds to ATP, MLKL is catalytically inactive and serves 
instead as a phosphorylation target of RIPK3 that is 
important for downstream signalling115,116. Intriguingly, 
MLKL is the only substrate of RIPK1 and RIPK3 that is 
relevant for the induction of necroptosis. This conclu-
sion is based on the ability of a constitutively active 
mutant MLKL protein to stimulate the necroptotic 
pathway either in the absence of RIPK3 or in the pres-
ence of the RIPK inhibitor necrostatin 1 (REF. 116). The 
intracellular location of MLKL may also be important. 
During the early phase of TNF-induced necroptosis, 
MLKL oligomers translocate to the plasma membrane 
where they seem to influence the location of the necro-
some. Membrane localization of multimerized MLKL, 
which is achieved by binding to the membrane lipids 
phosphatidylinositol and cardiolipin, is crucial for 
necroptosis120–122. It is suggested that oligomerized 
MLKL forms pores that are essential for the influx of 
positively charged ions, such as Na+, K+ or Ca2+, which 
is known to be an early event in TNF-induced necrop-
tosis120–122. However, the molecular events downstream 
of MLKL activation are not completely defined, and 
substantial work is needed to unravel the signalling 
network that underlies this form of TNFR1‑mediated 
cell death.

Targeting TNF in inflammatory diseases
TNF has long been associated with the clinical signs 
of various autoimmune and inflammatory disorders, 
including rheumatoid arthritis, inflammatory bowel 
disease (IBD), septic shock, ankylosing spondylitis, 
systemic lupus erythematosus (SLE), psoriasis, multi-
ple sclerosis, respiratory diseases, vasculitis and type 1 
diabetes (T1D)123,124 (BOX 1). Owing to the complexity of 
TNF signalling and the various roles of TNF in different 
diseases, current TNF-targeted therapies have resulted 
in remarkable successes, but also failures, in clinical 
applications.

Successes in targeting TNF. TNF is a key driver in pro-
moting and sustaining inflammatory responses involv-
ing B cells and T cells of the adaptive immune system, 
as well as various cell types of the innate immune 
system. Blocking TNF signalling using biologics (for 
example, monoclonal antibodies) that directly bind to 
either TNF itself or TNFR is currently the most effec-
tive therapeutic approach for many inflammatory 
diseases. At this time, five inhibitors of TNF–TNFR sig-
nalling have been approved by various regulatory bod-
ies around the world (namely, infliximab, etanercept, 
adalimumab, golimumab and certolizumab pegol)3. 
As outlined below, these agents have had a profound 
positive impact on many patient outcomes over the last 
two decades. The pharmaceutical industry continues 
to introduce dozens of new therapeutics that modulate 
TNFRSF signalling, and many of these are undergoing 
testing in clinical trials125.

Box 1 | TNFR signalling in inflammatory disorders

Tumour necrosis factor (TNF) was initially described as a factor that induces tumour 
cell death (by Carswell and Old in 1975), but it has since been shown to be heavily 
involved in diseases that are characterized by chronic inflammation. Prominent 
among these disorders is rheumatoid arthritis, which is a chronic inflammatory 
disease that mainly affects the peripheral joints but can also damage the lungs,  
skin, kidneys and heart. In rheumatoid arthritis, leukocytes infiltrate the synovial 
membranes of the joints and secrete chemokines, prostaglandins and 
pro-inflammatory cytokines, including TNF. In particular, TNF recruits osteoclast 
precursors from the bone marrow into synovial membranes, where these cells 
mediate the initial bone loss that is observed in patients. In addition, TNF-dependent 
signalling via receptor activator of nuclear factor-κB (RANK; also known as 
TNFRSF11A) and RANK ligand (RANKL; also known as TNFSF11) activates the 
downstream pathway mediated by TEC, Bruton’s tyrosine kinase (BTK) and 
phospholipase C (PLC) that leads to the expression of nuclear factor of activated 
T cells, cytoplasmic 1 (NFATc1), and subsequent osteoclast differentiation and 
activation. TNF also promotes NFATc1 expression by signalling through receptor-
interacting serine/threonine-protein kinase 1 (RIPK1), nuclear factor-κB (NF‑κB),  
JUN N-terminal kinase (JNK) and p38. Finally, TNF blocks the function of osteoblasts, 
which are the cells responsible for regenerating bone. It is this TNF-dependent 
dysregulation of osteoclasts and osteoblasts that is central to the imbalanced 
resorption of bone tissue in the joints that results in inflammation. Another 
inflammatory disorder involving TNF is inflammatory bowel disease (IBD), which  
is a collection of maladies that includes ulcerative colitis and Crohn disease. IBD is 
caused by an abnormal immune response against certain bacterial species that are 
present among the normal intestinal flora. Serum TNF levels in patients with IBD 
positively correlate with the severity of clinical manifestations of ulcerative colitis  
or Crohn disease, indicating that increased levels of TNF are probably a risk factor  
for these diseases. Macrophages, monocytes and T helper 1 (T

H
1) cells serve as  

direct sources of TNF in patients with IBD. Furthermore, T
H
17 cells producing 

interleukin‑17A (IL‑17A) and IL‑17F can induce macrophages to synthesize various 
pro-inflammatory cytokines, including TNF, IL‑1 and IL‑6, which intensify the immune 
attack against the intestinal flora.
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As far back as 1985, Beutler and colleagues126 showed 
that bacteria-induced sepsis in mice could be blocked by 
passive immunization with antibodies directed against 
TNF. Unfortunately, initial clinical trials using TNF-
specific antibodies to treat patients with sepsis did not 
have the desired outcome127,128. More recent data have 
shown that TNF-specific antibodies can be beneficial 
for patients with sepsis but that success may depend on 
several factors, including exactly which therapeutic is 
used and how soon after infection the drug is adminis-
tered129,130. With respect to rheumatoid arthritis, strong 
preclinical data from mouse models of arthritis sup-
ported the testing of TNF-specific antibodies in clini-
cal trials and confirmed the effectiveness of blocking 
TNF-mediated signalling131. This approach efficiently 
slows or prevents the progression of bone and cartilage 
damage in many patients with rheumatoid arthritis132,133. 
Currently, several biologics against TNF or TNFR have 
been approved for therapeutic use not only for various 
forms of arthritis but also for psoriasis, ankylosing spon-
dylitis and IBD134–137. With respect to IBD, numerous 
studies have demonstrated that TNF-targeted therapies 
can restore T cell homeostasis, inhibit inflammation and 
support the healing of the intestinal mucosa. In particu-
lar, TNF-targeted therapy of patients with ulcerative 
colitis greatly inhibits the activation and proliferation of 
pathogenic CD4+ and CD8+ T cells, and their secretion 
of TNF and IL‑17A138.

Failures in TNF targeting. Despite the above successes, 
TNF-targeted therapies sometimes have counterintuitive 
effects, and they have shown contradictory results in 
terms of efficacy (TABLE 1). For example, TNF inhibition 
has had a beneficial impact in children but not in older 
adults with T1D139,140, and on rare occasions, it has trig-
gered new-onset T1D in patients who received TNF-
targeted therapies for other inflammatory diseases141,142. 
As another example, although numerous studies have 
shown that TNF expression is enhanced in active lesions 
in patients with multiple sclerosis143,144, TNF inhibition in  
this group is detrimental145,146. This conundrum may 

be explained by the recent discovery that patients with 
multiple sclerosis express a novel truncated form of 
TNFRSF1A that is soluble and able to sequester TNF in 
the extracellular space, thereby antagonizing TNF  
signalling147. Treatment with TNF-specific antibodies 
that basically mimics the sequestration of TNF might 
explain why patients with multiple sclerosis deterio-
rate rather than improve. Similar to the role of TNF in 
multiple sclerosis, in the case of patients with SLE, it 
is hypothesized that TNF has an immunosuppressive 
rather than a pro-inflammatory role. Therefore, TNF 
inhibition would accelerate rather than slow SLE pro-
gression. Although TNF-targeted therapy has been 
efficacious in patients with SLE who also suffer from 
arthritis or nephritis, most clinical trials of TNF-
targeted therapies in SLE have been discontinued owing 
to adverse events148.

These negative patient outcomes following TNF-
targeted therapy imply that, at least for some inflamma-
tory diseases (such as T1D, SLE and multiple sclerosis), 
treatment with soluble TNF might be beneficial. 
Indeed, there are initial data supporting this approach 
based on the ability of TNF to selectively induce the 
death of autoreactive T cells or to induce endotoxin 
tolerance in macrophages149,150. As TNF-mediated 
signalling is very important for many physiological 
functions in the body, it should not be surprising that 
the use of TNF-specific and TNFR-specific thera-
peutics sometimes cause adverse events, including 
the development of lymphomas and infections151,152. 
Other severe side effects (summarized in TABLE 2) that 
have been related to TNF inhibition include lupus-like 
syndrome, diabetes, the induction of autoantibodies, 
psoriasis, demyelinating diseases and congestive 
heart failure153–157.

New approaches in TNF targeting. The serious problems 
encountered using TNF-specific and TNFR1‑specific 
antibodies to treat some patients with inflammatory 
conditions has spurred on the development of new 
strategies158,159. Although some efforts have turned to 

Table 1 | Diseases for which TNF inhibition is not approved

Disease Effects of TNF inhibition Refs

Multiple sclerosis TNF-specific antibody treatment of patients with multiple sclerosis has led 
almost exclusively to immune activation and disease exacerbation

173

Sepsis or septic shock Trials showed a small but significant benefit with TNF-targeted therapeutic 
strategies (3% better survival; better results were observed with therapies 
against TNF than against TNFR)

129

Respiratory diseases •	Etanercept seems to benefit patients with severe chronic asthma
•	Phase II trial of infliximab in patients with mild to moderate chronic 

obstructive pulmonary disease failed

173,177

Vasculitis TNF antagonists have been successfully used in patients with Behçet, 
rheumatoid, systemic and cryoglobulinemic vasculitis

173,178

Type 1 diabetes Treatment of paediatric patients with new-onset type 1 diabetes with 
etanercept showed benefit; however, adult patients with type 1 diabetes 
showed no significant disease improvement

139,179

Systemic lupus 
erythematosus

Infliximab improved disease outcome in some patients with systemic lupus 
erythematosus

148

TNF, tumour necrosis factor; TNFR, TNF receptor.
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targeting interleukins160, many pharmaceutical com-
panies are focusing on improving immunosuppressive 
therapies that target TNF. In addition, there remains 
interest in blocking TNF–TNFR signalling by using 
small-molecule inhibitors against kinases such as spleen 
tyrosine kinase (SYK), Janus kinases and p38, which 
mediate signalling downstream of TNF; such inhibitors 
have shown benefits in some patients with rheumatoid 
arthritis161,162. Various types of JNK inhibitors are in 
early-phase clinical trials, as are inhibitors of phospho-
diesterase 4 (PDE4), an enzyme that is crucial for soluble 
TNF generation and release. Although PDE4 block-
ade was very effective in inflammatory diseases, first- 
generation PDE4 inhibitors failed in clinical trials owing 
to the high prevalence of nausea and emesis163. These 
adverse events could be explained by the importance of 

PDE4 function in modulating the central nervous sys-
tem. The latest generation of PDE4 inhibitors, including 
roflumilast and apremilast, shows increased specificity 
towards individual PDE4 isoforms and is associated 
with fewer side effects. Roflumilast shows efficacy in 
patients with chronic obstructive pulmonary disease 
and apremilast reduces inflammation in patients with 
psoriasis or psoriatic arthritis164,165.

Another interesting concept is the development of 
small-molecule inhibitors that prevent TNF trimeriza-
tion, which is an event that is crucial for TNF-induced 
signalling166. Finally, non-biologic interference with the 
binding of TNF to TNFR may be of benefit in some situ-
ations. In several mouse models of arthritis, treatment 
with the growth factor progranulin (PGRN) or with an 
engineered protein called atsttrin, which is composed 

Table 2 | Summary of severe adverse events associated with TNF inhibition*

Therapeutic FDA-approved indication Possible adverse events Refs

Infliximab •	Rheumatoid arthritis
•	Psoriatic arthritis
•	Psoriasis
•	Ankylosing spondylitis
•	Crohn disease
•	Ulcerative colitis

•	Lupus-like syndrome
•	Cutaneous or systemic vasculitis
•	Interstitial lung diseases
•	Demyelinating neuropathies
•	Guillain–Barré syndrome
•	Infections with Listeria monocytogenes, Mycobacterium 

tuberculosis, Salmonella spp., Legionella spp. and Nocardia spp.
•	Nephritis
•	Various types of malignancies (including Hodgkin and 

non-Hodgkin lymphoma; hepatosplenic T cell lymphoma; acute 
and chronic leukaemia; melanoma; Merkel cell carcinoma; and 
breast, colorectal, lung, and head and neck cancer)

145,146,152–154, 
156–158,171–173

Etanercept •	Rheumatoid arthritis
•	Psoriatic arthritis
•	Psoriasis
•	Ankylosing spondylitis
•	Juvenile idiopathic arthritis

•	Lupus-like syndrome
•	Cutaneous or systemic vasculitis
•	Interstitial lung diseases
•	Type 1 diabetes (juvenile but not adult patients)
•	Nephritis
•	Demyelinating neuropathies
•	Significantly smaller observed rate for lymphoma and 

non-melanoma skin cancer, compared with other TNF inhibitors. 
For other malignancies, etanercept did not increase the 
occurrence rate compared with control arms in the controlled 
portions of clinical studies for all indications

139,141,142,145,14
6,153,154,156,158,1

72,173

Adalimumab •	Rheumatoid arthritis
•	Psoriatic arthritis
•	Psoriasis
•	Ankylosing spondylitis
•	Crohn disease
•	Juvenile idiopathic arthritis

•	Lupus-like syndrome
•	Cutaneous or systemic vasculitis
•	Interstitial lung diseases
•	Infection gastrointestinal and urinary tract
•	Autoimmune hepatitis
•	Bronchitis and tuberculosis
•	Optic neuritis and demyelinating neuropathies
•	Various types of malignancies (including Hodgkin and 

non-Hodgkin lymphoma, hepatosplenic T cell lymphoma and 
non-melanoma skin cancer)

146,152–154, 
156–158, 
172–174

Golimumab •	Rheumatoid arthritis
•	Psoriatic arthritis
•	Ankylosing spondylitis

•	Serious bacterial, fungal and viral infections
•	Various types of malignancies (including Hodgkin and 

non-Hodgkin lymphoma, hepatosplenic T cell lymphoma and 
melanoma)

•	Cytopaenia

154,158,175

Certolizumab 
pegol

•	Rheumatoid arthritis
•	Crohn disease

•	Infections with Listeria monocytogenes, Mycobacterium 
tuberculosis, Salmonella spp., Legionella spp. and Nocardia spp.

•	New-onset psoriasis
•	Cutaneous or systemic vasculitis
•	Various types of malignancies (including Hodgkin and 

non-Hodgkin lymphoma, and acute and chronic leukaemia)

154, 
156–158, 

175,176

*The five US Food and Drug Administration (FDA)-approved tumour necrosis factor (TNF)-specific biologics can cause various severe adverse events when used to 
treat patients with certain inflammatory diseases. However, the benefits of these treatments outweigh the rare occurrences of these side effects.
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of three PGRN fragments, prevented TNF-mediated 
inflammation167. Alternatively, it may be possible to spe-
cifically activate the TNFR2 pathway in the autoreactive 
T cells that drive inflammatory diseases. In this case, 
TNF-mediated apoptosis might selectively kill these 
T cells but have no effect on other host cells10,125.

It should be noted that it is essential to test all new 
approaches for reducing TNF-associated inflammation in 
clinical trials to determine whether they can outperform 
treatments with currently approved TNF-targeted bio-
logics. For instance, although small-molecule inhibitors 
of TACE showed promising preclinical results168, sev-
eral clinical trials examining these agents were largely 
unsuccessful and had to be discontinued owing to severe 
liver toxicity169. Although treatment with TNF-specific 

antibodies occasionally results in serious adverse events, 
these biologics have been remarkably successful; there-
fore, developing improved biologics against TNF and 
TNFR may be the most promising strategy (for example, 
Atrosab (Baliopharm), which is a fully humanized mono-
clonal antibody that specifically blocks TNFR1 but does 
not interfere with TNFR2 (REF. 170)). In any case, three 
decades of experience with the use of TNF-targeted bio-
logics in the clinic has clearly shown that one therapeutic 
will not treat all inflammatory diseases. The challenge for 
the future lies in creating target-specific drugs that can 
be used in combination and can be tailored to a particu-
lar type of inflammatory disease. Ultimately, the goal is 
to devise treatments that carry a reduced risk of adverse 
events and provide more effective therapy for patients.
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