High-throughput sample generation; Liquid chromatography; Metabolomics; Saccharomyces cerevisiae; Stable isotope labelling; Untargeted high-resolution mass spectrometry; Metabolome; Chromatography, Liquid; Mass Spectrometry; Chromatography, High Pressure Liquid/methods; Saccharomyces cerevisiae/metabolism; Metabolomics/methods; Disease etiology; High resolution mass spectrometry; High-throughput; Metabolic genes; Model organisms; Sample generations; Stable-isotope labeling; Chromatography, High Pressure Liquid; Analytical Chemistry; Biochemistry
Abstract :
[en] Identifying metabolites in model organisms is critical for many areas of biology, including unravelling disease aetiology or elucidating functions of putative enzymes. Even now, hundreds of predicted metabolic genes in Saccharomyces cerevisiae remain uncharacterized, indicating that our understanding of metabolism is far from complete even in well-characterized organisms. While untargeted high-resolution mass spectrometry (HRMS) enables the detection of thousands of features per analysis, many of these have a non-biological origin. Stable isotope labelling (SIL) approaches can serve as credentialing strategies to distinguish biologically relevant features from background signals, but implementing these experiments at large scale remains challenging. Here, we developed a SIL-based approach for high-throughput untargeted metabolomics in S. cerevisiae, including deep-48 well format-based cultivation and metabolite extraction, building on the peak annotation and verification engine (PAVE) tool. Aqueous and nonpolar extracts were analysed using HILIC and RP liquid chromatography, respectively, coupled to Orbitrap Q Exactive HF mass spectrometry. Of the approximately 37,000 total detected features, only 3-7% of the features were credentialed and used for data analysis with open-source software such as MS-DIAL, MetFrag, Shinyscreen, SIRIUS CSI:FingerID, and MetaboAnalyst, leading to the successful annotation of 198 metabolites using MS2 database matching. Comparable metabolic profiles were observed for wild-type and sdh1Δ yeast strains grown in deep-48 well plates versus the classical shake flask format, including the expected increase in intracellular succinate concentration in the sdh1Δ strain. The described approach enables high-throughput yeast cultivation and credentialing-based untargeted metabolomics, providing a means to efficiently perform molecular phenotypic screens and help complete metabolic networks.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
FAVILLI, Lorenzo ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
GRIFFITH, Corey ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Enzymology and Metabolism
H2020 - 814418 - SinFonia - Synthetic biology-guided engineering of Pseudomonas putida for biofluorination
FnR Project :
FNR12341006 - Environmental Cheminformatics To Identify Unknown Chemicals And Their Effects, 2018 (01/10/2018-30/09/2023) - Emma Schymanski
Funders :
Fonds National de la Recherche Luxembourg European Commission Union Européenne
Funding text :
The Environmental Cheminformatics and the Enzymology and Metabolism Groups of the LCSB, University of Luxembourg, Randolph R. Singh of the Institut Français de Recherche pour l’Exploitation de la Mer, and Rainer Schuhmacher of the Universität für Bodenkultur Wien, are acknowledged, for the valuable and constructive suggestions during the planning and development of this research work, along with the metabolomics platform of the LCSB for the technical support during the LC-MS analysis.LF and ELS acknowledge funding support from the Luxembourg National Research Fund (FNR) for project A18/BM/12341006, while CLL and CMG acknowledge support from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 814418 (SinFonia).
Nielsen J. Yeast systems biology: model organism and cell factory. Biotechnol J. 2019;14:1800421. 10.1002/biot.201800421. DOI: 10.1002/biot.201800421
Ellens KW, Christian N, Singh C, Satagopam VP, May P, Linster CL. Confronting the catalytic dark matter encoded by sequenced genomes. Nucleic Acids Res. 2017;45:11495–514. 10.1093/nar/gkx937. DOI: 10.1093/nar/gkx937
Alonso A, Marsal S, Julià A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol. 2015;3:23. 10.3389/fbioe.2015.00023. DOI: 10.3389/fbioe.2015.00023
Li D, Liang W, Feng X, Ruan T, Jiang G. Recent advances in data-mining techniques for measuring transformation products by high-resolution mass spectrometry. TrAC Trends Anal Chem. 2021;143:116409. 10.1016/j.trac.2021.116409.
Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45:703–14. 10.1002/jms.1777. DOI: 10.1002/jms.1777
Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12:523–6. 10.1038/nmeth.3393. DOI: 10.1038/nmeth.3393
Mahieu NG, Genenbacher JL, Patti GJ. A roadmap for the XCMS family of software solutions in metabolomics. Curr Opin Chem Biol. 2016;30:87–93. 10.1016/j.cbpa.2015.11.009. DOI: 10.1016/j.cbpa.2015.11.009
Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich H-C, Gutenbrunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G, Rurik M, Schmitt U, Veit J, Walzer M, Wojnar D, Wolski WE, Schilling O, Choudhary JS, Malmström L, Aebersold R, Reinert K, Kohlbacher O. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods. 2016;13:741–8. 10.1038/nmeth.3959. DOI: 10.1038/nmeth.3959
Tsugawa H. Advances in computational metabolomics and databases deepen the understanding of metabolisms. Curr Opin Biotechnol. 2018;54:10–7. 10.1016/j.copbio.2018.01.008. DOI: 10.1016/j.copbio.2018.01.008
Blaženović I, Kind T, Ji J, Fiehn O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites. 2018;8:31. 10.3390/metabo8020031. DOI: 10.3390/metabo8020031
Schymanski EL, Kondić T, Neumann S, Thiessen PA, Zhang J, Bolton EE. Empowering large chemical knowledge bases for exposomics: PubChemLite meets MetFrag. J Cheminformatics. 2021;13:19. 10.1186/s13321-021-00489-0. DOI: 10.1186/s13321-021-00489-0
Wolf S, Schmidt S, Müller-Hannemann M, Neumann S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics. 2010;11:148. 10.1186/1471-2105-11-148. DOI: 10.1186/1471-2105-11-148
Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu J, Böcker S. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods. 2019;16:10. 10.1038/s41592-019-0344-8. DOI: 10.1038/s41592-019-0344-8
Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci. 2015;112:12580–5. 10.1073/pnas.1509788112. DOI: 10.1073/pnas.1509788112
Kind T, Liu K-H, Lee DY, DeFelice B, Meissen JK, Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods. 2013;10:755–8. 10.1038/nmeth.2551. DOI: 10.1038/nmeth.2551
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46:D608–17. 10.1093/nar/gkx1089. DOI: 10.1093/nar/gkx1089
Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly M-A, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, DavidD H, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, MacInnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35:D521–6. 10.1093/nar/gkl923. DOI: 10.1093/nar/gkl923
Jewison T, Knox C, Neveu V, Djoumbou Y, Guo AC, Lee J, Liu P, Mandal R, Krishnamurthy R, Sinelnikov I, Wilson M, Wishart DS. YMDB: the yeast metabolome database. Nucleic Acids Res. 2012;40:D815–20. 10.1093/nar/gkr916. DOI: 10.1093/nar/gkr916
Ramirez-Gaona M, Marcu A, Pon A, Guo AC, Sajed T, Wishart NA, Karu N, Djoumbou Feunang Y, Arndt D, Wishart DS. YMDB 2.0: a significantly expanded version of the yeast metabolome database. Nucleic Acids Res. 2017;45:D440–5. 10.1093/nar/gkw1058. DOI: 10.1093/nar/gkw1058
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. 10.1093/nar/28.1.27. DOI: 10.1093/nar/28.1.27
Prosser GA, Larrouy-Maumus G, de Carvalho LPS. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. EMBO Rep. 2014;15:657–669. 10.15252/embr.201338283.
Clasquin MF, Melamud E, Singer A, Gooding JR, Xu X, Dong A, Cui H, Campagna SR, Savchenko A, Yakunin AF, Rabinowitz JD, Caudy AA. Riboneogenesis in yeast. Cell. 2011;145:969–80. 10.1016/j.cell.2011.05.022. DOI: 10.1016/j.cell.2011.05.022
Becker-Kettern J, Paczia N, Conrotte J-F, Kay DP, Guignard C, Jung PP, Linster CL. Saccharomyces cerevisiae forms d-2-hydroxyglutarate and couples its degradation to d-lactate formation via a cytosolic transhydrogenase. J Biol Chem. 2016;291:6036–58. 10.1074/jbc.M115.704494. DOI: 10.1074/jbc.M115.704494
Long JZ, Cisar JS, Milliken D, Niessen S, Wang C, Trauger SA, Siuzdak G, Cravatt BF. Metabolomics annotates ABHD3 as a physiologic regulator of medium-chain phospholipids. Nat Chem Biol. 2011;7:763–5. 10.1038/nchembio.659. DOI: 10.1038/nchembio.659
Lv M, Ji X, Zhao J, Li Y, Zhang C, Su L, Ding W, Deng Z, Yu Y, Zhang Q. Characterization of a C3 deoxygenation pathway reveals a key branch point in aminoglycoside biosynthesis. J Am Chem Soc. 2016;138:6427–35. 10.1021/jacs.6b02221. DOI: 10.1021/jacs.6b02221
Singh C, Glaab E, Linster CL. Molecular identification of d-ribulokinase in budding yeast and mammals. JBC. 2017;292:1005–28. 10.1074/jbc.M116.76074. DOI: 10.1074/jbc.M116.76074
Linster CL, Van Schaftingen E, Hanson AD. Metabolite damage and its repair or pre-emption. Nat Chem Biol. 2013;9:72–80. 10.1038/nchembio.1141. DOI: 10.1038/nchembio.1141
Griffith CM, Walvekar AS, Linster CL. Approaches for completing metabolic networks through metabolite damage and repair discovery. Curr Opin Syst Biol. 2021;28:100379. 10.1016/j.coisb.2021.100379.
Kremer LS, Danhauser K, Herebian D, Petkovic Ramadža Petkovic D, Piekutowska-Abramczuk D, Seibt A, Müller-Felber W, Haack TB, Ploski R, Lohmeier K, Schneider D, Klee D, Rokicki D, Mayatepek E, Strom TM, Meitinger T, Klopstock T, Pronicka E, Mayr JA, Baric I, Distelmaier F, Prokisch H. NAXE mutations disrupt the cellular NAD(P)HX repair system and cause a lethal neurometabolic disorder of early childhood. AJHG. 2016;99:894–902. 10.1016/j.ajhg.2016.07.018. DOI: 10.1016/j.ajhg.2016.07.018
Linster CL, Noël G, Stroobant V, Vertommen D, Vincent M-F, Bommer GT, Veiga-da-Cunha M, Van Schaftingen E. Ethylmalonyl-CoA decarboxylase, a new enzyme involved in metabolite proofreading. J Biol Chem. 2011;286:42992–3003. 10.1074/jbc.M111.281527. DOI: 10.1074/jbc.M111.281527
Veiga-da-Cunha M, Schaftingen EV, Bommer GT. Inborn errors of metabolite repair. J Inherit Metab Dis. 2020;43:14-24. https://doi.org/10.100/jimd.12187.
Van Schaftingen E, Rzem R, Marbaix A, Collard F, Veiga-da-Cunha M, Linster CL. Metabolite proofreading, a neglected aspect of intermediary metabolism. J Inherit Metab Dis. 2013;36:427–34. 10.1007/s10545-012-9571-1. DOI: 10.1007/s10545-012-9571-1
Peisl BYL, Schymanski EL, Wilmes P. Dark matter in host-microbiome metabolomics: tackling the unknowns-a review. Anal Chim Acta. 2018;1037:13–27. 10.1016/j.aca.2017.12.034. DOI: 10.1016/j.aca.2017.12.034
da Silva RR, Dorrestein PC, Quinn RA. Illuminating the dark matter in metabolomics. Proc Natl Acad Sci. 2015;112:12549–50. 10.1073/pnas.1516878112. DOI: 10.1073/pnas.1516878112
Mahieu NG, Huang X, Chen Y-J, Patti GJ. Credentialing features: a platform to benchmark and optimize untargeted metabolomic methods. Anal Chem. 2014;86:9583–9. 10.1021/ac503092d. DOI: 10.1021/ac503092d
de Jong FA, Beecher C. Addressing the current bottlenecks of metabolomics: Isotopic Ratio Outlier Analysis™, an isotopic-labeling technique for accurate biochemical profiling. Bioanal. 2012;4:2303–14. 10.4155/bio.12.202. DOI: 10.4155/bio.12.202
Huang X, Chen Y-J, Cho K, Nikolskiy I, Crawford PA, Patti GJ. X 13 CMS: global tracking of isotopic labels in untargeted metabolomics. Anal Chem. 2014;86:1632–9. 10.1021/ac403384n. DOI: 10.1021/ac403384n
Chokkathukalam A, Jankevics A, Creek DJ, Achcar F, Barrett MP, Breitling R. mzMatch–ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics. 2013;29:281–3. 10.1093/bioinformatics/bts674. DOI: 10.1093/bioinformatics/bts674
Capellades J, Navarro M, Samino S, Garcia-Ramirez M, Hernandez C, Simo R, Vinaixa M, Yanes O. geoRge: a computational tool to detect the presence of stable isotope labeling in LC/MS-based untargeted metabolomics. Anal Chem. 2016;88:621–8. 10.1021/acs.analchem.5b03628. DOI: 10.1021/acs.analchem.5b03628
Bueschl C, Kluger B, Lemmens M, Adam G, Wiesenberger G, Maschietto V, Marocco A, Strauss J, Bödi S, Thallinger GG, Krska R, Schuhmacher R. A novel stable isotope labelling assisted workflow for improved untargeted LC–HRMS based metabolomics research. Metabolomics. 2014;10:754–69. 10.1007/s11306-013-0611-0. DOI: 10.1007/s11306-013-0611-0
Wang L, Xing X, Chen L, Yang L, Su X, Rabitz H, Lu W, Rabinowitz JD. Peak annotation and verification engine for untargeted LC–MS metabolomics. Anal Chem. 2019;91:1838–46. 10.1021/acs.analchem.8b03132. DOI: 10.1021/acs.analchem.8b03132
Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB. High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol. 2003;21:692–6. 10.1038/nbt823. DOI: 10.1038/nbt823
Ewald JC, Heux S, Zamboni N. High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format. Anal Chem. 2009;81:3623–9. 10.1021/ac900002u. DOI: 10.1021/ac900002u
Pedersen BH, Gurdo N, Johansen HK, Molin S, Nikel PI, La Rosa R. High-throughput dilution-based growth method enables time-resolved exo-metabolomics of Pseudomonas putida and Pseudomonas aeruginosa. Microb Biotechnol. 2021;14:2214–26. 10.1111/1751-7915.13905. DOI: 10.1111/1751-7915.13905
Malinowska JM, Palosaari T, Sund J, Carpi D, Bouhifd M, Weber RJM, Whelan M, Viant MR. Integrating in vitro metabolomics with a 96-well high-throughput screening platform. Metabolomics. 2022;18:11. 10.1007/s11306-021-01867-3. DOI: 10.1007/s11306-021-01867-3
Mülleder M, Calvani E, Alam MT, Wang RK, Eckerstorfer F, Zelezniak A, Ralser M. Functional metabolomics describes the yeast biosynthetic regulome. Cell. 2016;167:553-565.e12. 10.1016/j.cell.2016.09.007. DOI: 10.1016/j.cell.2016.09.007
Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37:W652–60. 10.1093/nar/gkp356. DOI: 10.1093/nar/gkp356
Kondic T, et al. Shinyscreen, environmental cheminformatics. 2023. https://gitlab.lcsb.uni.lu/eci/shinyscreen. Accessed 10 May 2023.
Lai A, Singh RR, Kovalova L, Jaeggi O, Kondić T, Schymanski EL. Retrospective non-target analysis to support regulatory water monitoring: from masses of interest to recommendations via in silico workflows. Environ Sci Eur. 2021;33:43. 10.1186/s12302-021-00475-1. DOI: 10.1186/s12302-021-00475-1
Gibney PA, Lu C, Caudy AA, Hess DC, Botstein D. Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes. Proc Natl Acad Sci. 2013;110. 10.1073/pnas.1318100110.
Plassmeier J, Barsch A, Persicke M, Niehaus K, Kalinowski J. Investigation of central carbon metabolism and the 2-methylcitrate cycle in Corynebacterium glutamicum by metabolic profiling using gas chromatography–mass spectrometry. J Biotechnol. 2007;130:354–63. 10.1016/j.jbiotec.2007.04.026. DOI: 10.1016/j.jbiotec.2007.04.026
Giavalisco P, Li Y, Matthes A, Eckhardt A, Hubberten H-M, Hesse H, Segu S, Hummel J, Köhl K, Willmitzer L. Elemental formula annotation of polar and lipophilic metabolites using 13 C, 15 N and 34 S isotope labelling, in combination with high-resolution mass spectrometry: Isotope labelling for unbiased plant metabolomics. Plant J. 2011;68:364–76. 10.1111/j.1365-313X.2011.04682.x. DOI: 10.1111/j.1365-313X.2011.04682.x
Blaženović I, Kind T, Sa MR, Ji J, Vaniya A, Wancewicz B, Roberts BS, Torbašinović H, Lee T, Mehta SS, Showalter MR, Song H, Kwok J, Jahn D, Kim J, Fiehn O. Structure annotation of all mass spectra in untargeted metabolomics. Anal Chem. 2019;91:2155–62. 10.1021/acs.analchem.8b04698. DOI: 10.1021/acs.analchem.8b04698
Barupal DK, Fan S, Wancewicz B, Cajka T, Sa M, Showalter MR, Baillie R, Tenenbaum JD, Louie G, Kaddurah-Daouk R, Fiehn O. Data descriptor: generation and quality control of lipidomics data for the Alzheimer’s disease neuroimaging initiative cohort. Sci DATA. 2018;5:180263. 10.1038/sdata.2018.2631.
Wang et al. Peak annotation and verification engine, PAVE 2.0 Software. 2018. https://github.com/xxing9703/PAVE2.0. Accessed 10 May 2023.
Kessner D, Chambers M, Burke R, Agus D, Mallick P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics. 2008;24:2534–6. 10.1093/bioinformatics/btn323. DOI: 10.1093/bioinformatics/btn323
Favilli L. MassIVE MSV000090663-GNPS-high-throughput Saccharomyces cerevisiae cultivation method for credentialing-based untargeted metabolomics-Supplementary Files. 2022. 10.25345/C5BN9X73B.
Favilli L. Zenodo-high-throughput Saccharomyces cerevisiae cultivation method for credentialing-based untargeted metabolomics-Supplementary Files. Zenodo Dataset. 2022. 10.5281/zenodo.7299206.
Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48:2097–8. 10.1021/es5002105. DOI: 10.1021/es5002105
Bolton E, Schymanski E. PubChemLite tier0 and tier1. Zenodo Dataset. 2020. 10.5281/zenodo.3611238.
PubChem Identifier Exchange Service. https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi. Accessed 12 Dec 2022.
Dodds JN, Wang L, Patti GJ, Baker ES. Combining isotopologue workflows and simultaneous multidimensional separations to detect, identify, and validate metabolites in untargeted analyses. Anal Chem. 2022;94:2527–35. 10.1021/acs.analchem.1c04430. DOI: 10.1021/acs.analchem.1c04430
Jeffryes JG, Colastani RL, Elbadawi-Sidhu M, Kind T, Niehaus TD, Broadbelt LJ, Hanson AD, Fiehn O, Tyo KEJ, Henry CS. MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. J Cheminformatics. 2015;7:44. 10.1186/s13321-015-0087-1. DOI: 10.1186/s13321-015-0087-1
Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la-Fuente A, Greiner R, Manach C, Wishart DS. BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J Cheminformatics. 2019;11:2. 10.1186/s13321-018-0324-5. DOI: 10.1186/s13321-018-0324-5
Wishart DS, Tian S, Allen D, Oler E, Peters H, Lui VW, Gautam V, Djoumbou-Feunang Y, Greiner R, Metz TO. BioTransformer 3.0—a web server for accurately predicting metabolic transformation products. Nucleic Acids Res. 2022;50:W115–23. 10.1093/nar/gkac313. DOI: 10.1093/nar/gkac313
Cobbold SA, V Tutor M, Frasse P, McHugh E, Karnthaler M, Creek DJ, Odom John A, Tilley L, Ralph SA, McConville MJ. Non-canonical metabolic pathways in the malaria parasite detected by isotope-tracing metabolomics. Mol Syst Biol. 2021;17:e10023. 10.15252/msb.202010023.
Xu T, Hu C, Xuan Q, Xu G. Recent advances in analytical strategies for mass spectrometry-based lipidomics. Anal Chim Acta. 2020;1137:156–69. 10.1016/j.aca.2020.09.060. DOI: 10.1016/j.aca.2020.09.060
Xicoy H, Wieringa B, Martens GJM. The role of lipids in Parkinson’s disease. Cells. 2019;8:27. 10.3390/cells8010027. DOI: 10.3390/cells8010027
Kao Y-C, Ho P-C, Tu Y-K, Jou I-M, Tsai K-J. Lipids and Alzheimer’s disease. Int J Mol Sci. 2020;21:1505. 10.3390/ijms21041505. DOI: 10.3390/ijms21041505
Schiffman C, Petrick L, Perttula K, Yano Y, Carlsson H, Whitehead T, Metayer C, Hayes J, Rappaport S, Dudoit S. Filtering procedures for untargeted LC-MS metabolomics data. BMC Bioinform. 2019;20:334. 10.1186/s12859-019-2871-9. DOI: 10.1186/s12859-019-2871-9
Shin M, Sano K, Umezawa C. Metabolism of tryptophan to niacin in Saccharomyces uvarum. J Nutr Sci Vitaminol. 1991;37:269–83. 10.3177/jnsv.37.269. DOI: 10.3177/jnsv.37.269
Croft T, Venkatakrishnan P, Lin S-J. NAD+ metabolism and regulation: lessons from yeast. Biomolecules. 2020;10:330. 10.3390/biom10020330. DOI: 10.3390/biom10020330
Gupta S, Zhang J, Rivera M, Erickson LA. Urinary bladder paragangliomas: analysis of succinate dehydrogenase and outcome. Endocr Pathol. 2016;27(3):243–52. 10.1007/s12022-016-9439-2. DOI: 10.1007/s12022-016-9439-2
Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der MEy A, Tascher PE, Rubinstein WS, Myers EN, Richard CW, Cornelisse CJ, Devilee P, Devlin B. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000;287(5454):848-851. 10.1126/science.287.5454.848.
Pollard PJ, Wortham NC, Tomlinson IPM. The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann Med. 2003;35(8):632–9. 10.1080/07853890310018458. DOI: 10.1080/07853890310018458
Lower GM Jr, Bryan GT. The metabolism of the 8-methyl ether of xanthurenic acid in the mouse1. Cancer Res. 1969;29:1013–8.
Collard F, Baldin F, Gerin I, Bolsée J, Noël G, Graff J, Veiga-da-Cunha M, Stroobant V, Vertommen D, Houddane A, Rider MH, Linster CL, Van Schaftingen E, Bommer GT. A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast. Nat Chem Biol. 2016;12:601–7. 10.1038/nchembio.2104. DOI: 10.1038/nchembio.2104
Bertels L-K, Fernández Murillo L, Heinisch JJ. The pentose phosphate pathway in yeasts–more than a poor cousin of glycolysis. Biomolecules. 2021;11:725. 10.3390/biom11050725. DOI: 10.3390/biom11050725
Schwentner A, Feith A, Münch E, Stiefelmaier J, Lauer I, Favilli L, Massner C, ÖhrleinJ GB, Hüser A, Takors R, Blombach B. Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum. Biotechnol Biofuels. 2019;12:65. 10.1186/s13068-019-1410-2. DOI: 10.1186/s13068-019-1410-2