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Abstract
Identifying metabolites in model organisms is critical for many areas of biology, including unravelling disease aetiology or 
elucidating functions of putative enzymes. Even now, hundreds of predicted metabolic genes in Saccharomyces cerevisiae 
remain uncharacterized, indicating that our understanding of metabolism is far from complete even in well-characterized 
organisms. While untargeted high-resolution mass spectrometry (HRMS) enables the detection of thousands of features per 
analysis, many of these have a non-biological origin. Stable isotope labelling (SIL) approaches can serve as credentialing 
strategies to distinguish biologically relevant features from background signals, but implementing these experiments at large 
scale remains challenging. Here, we developed a SIL-based approach for high-throughput untargeted metabolomics in S. 
cerevisiae, including deep-48 well format-based cultivation and metabolite extraction, building on the peak annotation and 
verification engine (PAVE) tool. Aqueous and nonpolar extracts were analysed using HILIC and RP liquid chromatography, 
respectively, coupled to Orbitrap Q Exactive HF mass spectrometry. Of the approximately 37,000 total detected features, only 
3–7% of the features were credentialed and used for data analysis with open-source software such as MS-DIAL, MetFrag, 
Shinyscreen, SIRIUS CSI:FingerID, and MetaboAnalyst, leading to the successful annotation of 198 metabolites using  MS2 
database matching. Comparable metabolic profiles were observed for wild-type and sdh1Δ yeast strains grown in deep-48 
well plates versus the classical shake flask format, including the expected increase in intracellular succinate concentration 
in the sdh1Δ strain. The described approach enables high-throughput yeast cultivation and credentialing-based untargeted 
metabolomics, providing a means to efficiently perform molecular phenotypic screens and help complete metabolic networks.
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MTBE  Methyl tert-butyl ether
NAD+  Nicotinamide adenine dinucleotide (oxi-

dized form)
NEG  Negative ionization mode
Norm.   Normalized
PAVE  Peak annotation and verification engine
PCA  Principal component analysis
POS  Positive ionization mode
RP  Reverse phase
rpm  Revolutions per minute
RT  Retention time
S. cerevisiae  Saccharomyces cerevisiae, Budding yeast
SD  Standard deviation
sdh1Δ   Yeast strain with single gene deletion for 

the flavoprotein subunit of succinate dehy-
drogenase. In this work also referred to as 
“knockout”

SF  Shake flask
ESM  Electronic supplementary material
SIL  Stable isotope labelling
TOF  Time-of-flight
YMDB  Yeast Metabolome Database
YNB  Yeast nitrogen base

Introduction

Saccharomyces cerevisiae (S. cerevisiae, budding yeast) is 
a unicellular, eukaryotic model organism that is well-suited 
for discovering key cellular processes and even studying 
mechanisms of human disease due to its genetic malleabil-
ity, the availability of genome wide knockout (KO) collec-
tions, and the considerable conservation between yeast and 
human genes [1, 2]. Compellingly, thousands of sequenced 
genes remain uncharacterized in model organisms. In 2017, 
it was estimated that the biological function of 29% of the 
S. cerevisiae proteome was still unknown, with a significant 
proportion suspected to have catalytic functions [2]. Metabo-
lomics, a technique enabling the comprehensive study of 
metabolic networks and metabolic states of organisms, is 
routinely performed using gas chromatography (GC) or 
liquid chromatography (LC) coupled to mass spectrometry 
[3]. Advancements in high-resolution mass spectrometry 
(HRMS) have expanded our understanding of biochemi-
cal metabolic networks, yet the large number of remaining 
enzymes of unknown function indicates that there are likely 
still many hidden or unknown metabolic reactions and hence 
metabolites. HRMS instrumentation offers high mass resolv-
ing power and mass accuracy, which is ideal for identify-
ing novel metabolites with high confidence [4]. HRMS data 
often are acquired using data-dependent acquisition (DDA), 
where a selected number of ions are fragmented using tan-
dem mass spectrometry  (MS2) at a given time to obtain a 

chemical fingerprint of the ion, which can be pieced together 
like a puzzle to reveal its structure. Large community efforts 
have established open source  MS2 libraries (e.g. MassBank) 
[5] and data processing software (e.g. MS-DIAL [6], XCMS 
[7], and Open MS [8]) [9, 10] to assist in metabolite anno-
tation. Cheminformatics and in silico fragmentation tools 
are commonly used to overcome the gap between avail-
able experimental  MS2 and the reported chemical space by 
retrieving candidates from compound databases and ranking 
them using in silico methods [10, 11]. Widely used in silico 
fragmentation prediction approaches include MetFrag [12], 
Sirius CSi:FingerID [13, 14], and LipidBlast [15]. These, 
combined with compound databases such as HMDB [16, 
17], YMDB [18, 19], KEGG [20], and PubChemLite [11], 
assist feature annotation and help to condense, filter, and 
organize the obtained results [9–11]. Untargeted HRMS-
based metabolomics is a valuable approach for elucidating 
the biochemical roles of unknown enzymes and completing 
metabolic networks. In particular, the ex vivo metabolic pro-
filing approach [2, 21] has been used for functional investi-
gations of unknown enzymes based on the analysis of over-
expression and/or knockout strains of the gene of interest, 
including notable examples in budding yeast [22–26].

The intracellular formation of non-canonical metabolites 
adds another layer of complexity to metabolome annotation 
efforts. In contrast to the historical viewpoint that meta-
bolic enzymes are highly specific, it is now clear that non-
canonical metabolites arise from enzyme promiscuity and 
non-enzymatic reactions, thereby increasing the chemical 
diversity of the metabolic space. Under normal conditions, 
the concentration of these non-canonical metabolites is usu-
ally maintained at very low levels by dedicated metabolite 
repair enzymes, which reconvert the useless or potentially 
toxic metabolic side products to useful and/or benign prod-
ucts [27, 28]. Deficiencies in metabolite repair enzymes can 
lead to inherited metabolic disorders, and enzyme promiscu-
ity and metabolite repair possibilities are important consid-
erations in metabolic engineering endeavours [29–32]. It is 
anticipated that metabolite repair enzymes could make up a 
considerable portion of the remaining enzymes of unknown 
function, since there should be relatively few gaps remaining 
in primary metabolic pathways [2]; untargeted metabolomics 
approaches are a valuable asset to also elucidate this (often 
neglected) part of metabolism.

However, of the tens of thousands of features classi-
cally detected by untargeted HRMS metabolomics analysis 
in biological samples, over 90% are likely not of (direct) 
biological origin but rather in-source fragments, adducts, 
isotopes, environmental contaminants, and other artefacts 
[33]. In addition, approximately only 2% of the detected 
features are commonly annotated, leaving the vast majority 
of the collected information uncharacterized (the so-called 
dark matter [34]). Often, it is not possible to distinguish 
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between background and truly biological signals in con-
ventional untargeted workflows, leading to important peaks 
being overlooked, along with annotation (or misannotation) 
of less relevant background features and potentially errone-
ous biological interpretations. Credentialing strategies [35] 
are designed to unearth biologically derived features from 
background by comparing data obtained from unlabelled and 
stable isotope-labelled metabolite extracts. Here, microbial 
cultures can be grown in identical conditions using unla-
belled or stable isotope-labelled substrates (e.g. glucose-
13C6, (15NH4)2SO4), and the metabolite extracts are analysed 
by GC-MS or LC-MS [28]. Various software approaches 
(e.g. IROA [36],  X13CMS [37], mzMatch-ISO [38], geoRge 
[39], MetExtractII [40]) and the Peak Annotation and Veri-
fication Engine (PAVE) [41] are available to identify mass 
shifts (corresponding to the number of labelled atoms) at a 
given retention time (RT). Credentialing reduces the tens 
of thousands of features typically detected in an untargeted 
experiment to hundreds or thousands of biologically relevant 
ones [35, 41], which can then be prioritized for annotation 
and biological interpretation. The latter still represent major 
bottlenecks of metabolomics studies together with metabo-
lite coverage and analytical throughput [42]. Credentialing is 
particularly appealing to perform with prototrophic microor-
ganisms where uniformly labelled extracts can be obtained, 
as highlighted in the PAVE workflow [41]. PAVE compares 
metabolite extracts of cells cultivated in unlabelled, 13C, 
15N, and 13C+15N media and injected separately to identify 
and remove adducts, isotopes, MS artefacts, and in-source 
fragments. The resulting peak list contains only biologically 
derived features (i.e. those features where the stable isotopes 
have been integrated), which are assigned carbon/nitro-
gen counts and, in some cases, molecular formulas. When 
applied to microorganisms, PAVE successfully credentialed 
between 2 and 5% of the features detected in Escherichia 
coli and S. cerevisiae extracts, while the rest of the detected 
signals were recognized as non-biological with the majority 
arising from background signals (80%), along with adducts 
(4%), and isotopes (4%). Over 200 credentialed features 
were subsequently annotated using internal standards and 
mass-to-charge ratio (m/z), retention time (RT), and  MS2 
spectral matches (148 by RT and m/z, 73 with additional 
 MS2 match).

Credentialing dramatically increases the experimental 
complexity, sample number, analytical time, and cost of 
metabolomics experiments. High-throughput, multi-well 
cultivation methods may alleviate the experimental effort 
and enable testing of multiple strains and/or conditions in 
a single experiment [43–47], ultimately making large-scale 
credentialing experiments feasible. For instance, Ewald and 
colleagues (2009) [44] used a multi-well format for culti-
vation, quenching, and quantification of 30 primary yeast 
metabolites using GC-TOF. Using a vacuum manifold, 

fast quenching of metabolism in the exponential growth 
phase was achieved by transferring the cultivation broth 
of a 96-well fritted plate into a 48-well plate containing 
pre-cooled methanol (-40 °C). The validity of the method 
was supported by the highly comparable results observed 
in multi-well and shake flask format in terms of growth 
rate, substrate uptake, by-product formation, and metabolic 
profiles.

Although high-throughput cultivation is a promising 
approach for performing large-scale metabolomics, rela-
tively few studies of this type are reported in the literature 
and to the best of our knowledge, none of the reported stud-
ies have integrated a high-throughput labelling strategy with 
untargeted metabolic profiling. Herein, a high-throughput S. 
cerevisiae cultivation method in a deep-48 well (D48) for-
mat is presented that enables credentialing-based untargeted 
metabolomics using hydrophilic interaction liquid chroma-
tography (HILIC)-HRMS and lipid analyses using reverse 
phase (RP) LC-HRMS. Yeast strains were simultaneously 
cultivated in unlabelled or uniformly labelled (13C, 15N, 
and 13C+15N) conditions, and the presented robust, easy-
to-handle, and efficient experimental workflow allowed for 
screening of multiple conditions and/or strains and genera-
tion of 48 polar and nonpolar extracts for LC-HRMS analy-
sis per experiment. A computational workflow based on MS-
DIAL and MetFrag combined with PubChemLite, Sirius 
CSI:FingerID, and MetaboAnalyst [48] was established. The 
openly accessible R package Shinyscreen [49, 50] was used 
to perform automated mass shift quality control for creden-
tialed results, including pre-screening of MS data with qual-
ity control of  MS1 and  MS2 event alignment and automated 
 MS2 spectra extraction. Analogous to Ewald and co-authors 
[44], we compared metabolic profiles between a strain with 
a metabolic enzyme gene deletion (sdh1Δ) and a wild-type 
control strain as a case study and expanded their proof-of-
principle for biological application using a hypothesis-gen-
erating untargeted approach. The highly comparable results 
obtained with the D48 well format and classical shake flask 
(SF) approaches, at both the cultivation and analytical levels, 
support that the proposed workflow for high-throughput cre-
dentialing-based untargeted metabolomics in yeast will push 
the outcome and quality of metabolic phenotypic screening 
efforts in this model organism to the next level.

Materials and methods

Experimental pipeline

Yeast cultivation The prototrophic S. cerevisiae strains 
(MATa can1∆::STE2pr-SpHIS5 his3∆1 lyp1∆0 ho−) were 
kindly provided by Prof. Joseph Schacherer [51]. The KO 
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strain (sdh1Δ) used had the SDH1 gene (encoding the flavo-
protein subunit of succinate dehydrogenase) replaced by the 
kanamycin resistance cassette (kanMX). A strain with the 
kanMX cassette in the HO gene was used as the wild-type 
(WT) control strain. Yeast strains were cultivated in filter-
sterilized minimal yeast nitrogen base (5 g/L) medium with-
out ammonium sulphate (YNB w/o ammonium sulphate, 
MP Biochemicals) containing 20 g/L D-glucose (Sigma) 
and 1.7 g/L ammonium sulphate (Sigma), and the pH was 
adjusted to 5.5 (this medium is hereafter designated as 12C-
YNB medium). D-Glucose was replaced with uniformly car-
bon labelled D-glucose (20 g/L, U-13C6, 99%, Cambridge 
Isotope Laboratories Inc.) in the 13C-YNB and 13C15N-YNB 
conditions, while the ammonium sulphate was replaced with 
uniformly nitrogen labelled ammonium sulphate (1.7 g/L, 
15N2SO4, 99%, Cambridge Isotope Laboratories Inc.) in 15N-
YNB and 13C15N-YNB conditions.

Yeast glycerol stock solutions [23] were used to inoculate 
12C-YNB cultures with a single colony of the respective 
strains from agar plates (20 g/L agar, 20 g/L D-glucose, 
6.7 g/L YNB with ammonium sulphate) after incubation of 
minimum 3 days at 30 °C. For a complete experiment, 12 
single colonies of each strain were used to inoculate 5-mL 
pre-cultures for the four media conditions (12C-YNB, 13C-
YNB, 15N-YNB, and 13C15N-YNB) in 14-mL cell culture 
tubes (CELLSTAR® Cell Culture Tubes, Greiner bio-one) 
that were shaken at 30 °C and 200 rpm (Infors HT Multi-
tron Standard). The cell densities of the pre-cultures were 
measured 24 h after inoculation to set the starting  OD600 
of the main cultures (in D48 plates or SF) to 0.025. For the 
D48 plates (Axygen, 5 mL 48 rectangular wells, V-bottom, 
P-5ML-48-C-D), 4-mm glass beads were added to each 
well in order to improve the mixing [44]. For the presented 
work, twenty-four wells of the D48 plates were filled with 
3 mL of each main culture. The remaining wells were filled 
with either sterile YNB medium (without carbon or nitro-
gen source, n = 8) or sterile 12C-YNB (n = 16) to prepare 
extraction blanks (the glucose-free YNB medium blanks 
were used for the PAVE data analysis; 12C-YNB blanks were 
used to estimate cross-over between wells during cultiva-
tion and metabolite extraction). The D48 plates were sealed 
with a gas-permeable lid (AeraSeal film, Sigma-Aldrich), 
and the cultivation was conducted at 30 °C and shaken at 
400 rpm (Edmund Bühler, TiMix 2). The SF cultivations 
were performed in 250 mL Erlenmeyer flasks filled with 
25 mL medium at 30 °C and shaken at 200 rpm (Infors HT 
Multitron Standard).

Using the above-described growth conditions, and in an 
independent experiment, cell concentrations and extracel-
lular glucose levels were measured hourly to estimate the 
growth and glucose uptake rate of the yeast WT strain for 
the SF and D48 cultivation method in the 12C-YNB medium. 

Cell concentration was measured using a Multisizer Z3 
Coulter Counter (30 μm measurement capillary, Beckman 
Coulter) after dilution in ISOTON II solution (Beckman 
Coulter). The substrate consumption was measured in ster-
ile-filtered (0.2 μm cellulose syringe filter, VWR Chemicals) 
spent media that were stored at  − 20 °C until D-glucose 
measurement using a YSI (Yellow Springs Instruments 2900 
Series Biochemistry Analyser).

Sampling and extraction of intracellular metabolites Cell 
pellets were harvested during the exponential growth phase 
(16 h) using a fast centrifugation treatment [52]. For the D48 
approach, prior to centrifugation, 200 μL of culture per well 
was transferred, using a multichannel pipette (E4 XLS, 8 
channel electronic pipette, 100–1200 μL, Rainin), to another 
D48 plate containing 2.8 mL ISOTON II solution per well 
for the biovolume measurements (also referred to as Meas-
ured Biovolume [μL/mL]) using the Multisizer Z3 Coulter 
Counter. The D48 plates were centrifuged for 20 s at 4 °C 
and 4816 g (Heraeus Multifuge × 3R, Thermo Scientific), 
the supernatant was discarded by plate inversion, and the 
cell pellets were flash-frozen by placing the plates in liquid 
nitrogen. The above-described sampling procedure using 
the D48 approach took approximately 6 min, per D48 plate, 
i.e. 7.5 s per sample. Analogously, 1 mL of the SF cultiva-
tions was sampled for biovolume measurements, and 2-mL 
aliquots was transferred to fresh 2-mL Eppendorf tubes 
and centrifuged for 20 s at 4 °C and 16000 g (Centrifuge 
5415 R, Eppendorf). The supernatants were discarded, and 
cell pellets were flash-frozen in liquid nitrogen. The sam-
pling time for the SF cultivation method was approximately 
16 min for 27 samples (24 biological samples represent-
ing three biological replicates for each of the WT and KO 
strains in the four cultivation conditions needed in the PAVE 
approach and three YNB glucose-free extraction blanks) or 
35.5 s per sample. For both experimental setups, metabo-
lites were extracted using biphasic liquid–liquid extraction 
(MTBE:MeOH:H2O 65:20:15) [53]. For the D48 plates, 635 
μL of MeOH:H2O mixture (55:45,  − 20 °C) was added to 
the pellets. Cells were resuspended by shaking at 1000 rpm 
for 5 min at room temperature (Thermomixer Comfort, 
Eppendorf) and 1154 μL MTBE (− 20 °C) was added for 
metabolite extraction. The plates were covered with an 
empty D48 plate, sealed with parafilm (PARAFILM® M, 
Merck) and tape, and incubated for 2 h at 4 °C and shaken 
at 700 rpm (Thermomixer Comfort). The whole cell lysates 
were transferred to 2-mL Eppendorf tubes for subsequent 
phase separation. During this extraction procedure, all pipet-
ting steps were performed using a multichannel pipette for 
the D48 approach. The same metabolite extraction procedure 
and extraction fluid volumes were applied to the SF samples 
but through manual pipetting. The extraction procedure for 
the D48 approach took approximately 12 min per D48 plate 
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(i.e. 15 s per sample), compared to approximately 18 min 
for 27 samples in the SF approach (i.e. 40 s per sample). For 
both methods, phase separation between the upper, nonpolar 
phase (MTBE), and the lower aqueous phase (MeOH:H2O) 
was achieved by centrifugation for 10 min at 4  °C and 
16000 g (Centrifuge 5415 R, Eppendorf). Subsequently, 750 
μL and 300 μL of the upper nonpolar and lower aqueous 
phase, respectively, were transferred to 1.5-mL Eppendorf 
tubes. To improve evaporation, 200 μL MeOH were added 
to the nonpolar phase, and all metabolite extracts were dried 
overnight in a SpeedVac at  − 4 °C (Labconco).

LC‑HRMS analyses Adapted from already published work 
[54, 55], the dried polar extracts were resuspended in 80:20 
ACN:H2O containing 10  μM 4-chloro-L-phenylalanine 
(Sigma-Aldrich) as the internal standard, while the dried 
nonpolar extracts were reconstituted in 90:10 MeOH:toluene 
containing 440 nM 12-[(cyclohexylcarbamoyl)amino]dode-
canoic acid (Sanbio) as the internal standard. Samples were 
normalized by adjusting the Resuspension Volume [mL] to 
obtain a Fixed Biovolume of 10 μL/mL using the Measured 
Biovolume [μL/mL] as follows:

The Sampling Volume [mL] refers to the collected cul-
ture aliquots (e.g. 2.8 mL from the D48 plates and 2 mL 
from the SFs), the Collected Phase [mL] is 0.75 mL for the 
organic and 0.3 mL for the aqueous phase, and the Extrac-
tion Fluid Volume [mL] refers to the added organic solvent 
(1.154 mL MTBE for the organic/nonpolar phase, 0.635 mL 
MeOH:H2O for the aqueous phase).

The obtained cell extracts, after resuspension to 10 μL/
mL biovolume, were diluted further to a final biovolume 
of 7.5 μL/mL for injection. Samples were centrifuged for 
10 min at 4 °C and 16000 g (Centrifuge 5415 R, Eppendorf), 
and 50 μL of the supernatant was transferred into HPLC 
vials containing 250 μL inserts.

Metabolic and lipidomic profiling was conducted using 
a Thermo Vanquish LC coupled to a Q Exactive HF Orbit-
rap mass spectrometer. Polar metabolites (cell extracts from 
aqueous phase) were measured using a previously described 
HILIC method [54], and 5 μL of the extracts was injected. 
Nonpolar metabolites (cell extracts from organic phase) 
were measured using a previously described RP method for 
lipid detection [54] with the adapted DDA parameters (AGC 
target of 1e6 and maximum injection time of 70 ms), and 5 
μL of extracts was injected.

Resuspension Volume [mL] =

Measured Biovolume
[

�L

mL

]

× Sampling Volume [mL] × Collected Phase [mL]

Extraction Fluid Volume [mL] × Fixed Biovolume [
�L

mL
]

A schematic representation of the experimental approach 
and techniques used in this study is summarized in Fig. 1.

Intracellular succinate quantification Intracellular 13C 
succinate concentrations were quantified in uniformly 
13C-labelled cell extracts with a newly designed method 
based on spiking with unlabelled (12C) succinate. The spike 
concentration was estimated using the measured intracellular 
13C succinic acid areas and an external calibration curve 
generated with unlabelled succinate.

Data analysis

The parameter settings for the different software described 
below (Proteowizard, MS-DIAL, PAVE, Shinyscreen, SIR-
IUS CSI:FingerID) are all available in the electronic sup-
plementary material (ESM, Section S3).

Computational workflow Raw LC-HRMS files of all sam-
ples (including extraction and procedural blanks) were first 
imported into MS-DIAL 4.8 [6] for peak detection, decon-
volution, and alignment. Through this common peak-pick-

ing alignment input, each detected feature became a unique 
numeric MS-DIAL ID that was used to identify features in 
the subsequent data analysis. This feature list was imported 
into the PAVE 2.0 MATLAB GUI [56] using MATLAB 
version R2017b. Raw files were converted to mzXML files 
(Proteowizard, v3.0.20022-e71f69e07, [57]) and parsed to 
generate a single M file for each experimental setup, strain/
condition, and ionization mode (.mat format, n = 4 for posi-
tive ionization mode, n = 4 for negative ionization mode, 
available in the ESM, GNPS [58]). The credentialing data 
analysis followed the PAVE workflow [41] and was per-
formed separately for each strain and experimental condi-
tion tested using the generated M files (SF-WT, SF-KO, 
D48-WT, and D48-KO), and a list of credentialed features 
for each strain and condition was generated (ESM, Zenodo, 
files F03-04 [59]). The MS-DIAL ID was used to elimi-
nate duplicate features by merging the credentialed features 
obtained for the WT and KO strains in each experimental 
setup after the credentialing analysis of PAVE. This gener-
ated list, containing unique features per experimental setup 
(referred to as “Total Features Exp. Setup” by the further 
steps of the data analysis), was used as the input for the next 
step of the computational pipeline (available by the ESM, 
Zenodo, files F05-08 [59]).
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Quality control of credentialed features using Shiny‑
screen The feature list fed into PAVE and the resultant car-
bon and nitrogen count of credentialed features was used to 
calculate the theoretical 13C15N-m/z for each feature. The 
calculated 13C15N-mass shift was used to perform a creden-
tialing quality control using Shinyscreen (v1.0.3 [49]). Con-
verted mzXML 13C15N files and the merged PAVE results 
coming from the same experimental setup (e.g. D48-WT-KO 
and SF-WT-KO, “Total Features Exp. Setup”) were used 
as the input. Features that showed the corresponding mass 
shift in the uniformly labelled data were retained (recog-
nized by Shinyscreen and tagged with MS1 = TRUE, with 
results and data analysis steps available by ESM, Zenodo, 
files F05-08 [59]) and used for feature annotation and further 
data analysis.

Feature annotation For the HILIC-based analysis, the 
feature annotation was performed using a confidence level 
scheme [60]. Level 1 or confirmed structures were assigned 

to features having a RT, m/z, and  MS2 match with authen-
ticated reference standards; Level 2A or probable struc-
ture was assigned by  MS2 spectral matching using spectral 
databases; Level 3 or tentative structure candidates were 
obtained with the detected spectral information and pre-
dicted with in silico fragmentation tools; Level 4 or une-
quivocal chemical formula assignment was assigned using 
exact masses and natural isotope distributions; and Level 5 
or mass of interest was assigned to features where the esti-
mation of chemical composition or structure elucidation was 
not possible using the experimental data. The annotation was 
conducted by applying a hierarchical step-by-step approach 
using the cheminformatics software outlined below.

Annotation with MS‑DIAL First, features were putatively 
annotated in MS-DIAL as Level 2A following manual 
review if they fulfilled the minimal criteria of a dot prod-
uct  ≥ 50% and fragment presence  ≥ 50%. These features 
were reported as “Level 2A MS-DIAL”. The database used 

Fig. 1  High-throughput sample generation using a D48-well plate. 
(1) Cultivation: yeast strains are cultivated in a D48 well plate in the 
presence of unlabelled and/or stable isotope-labelled substrates. (2) 
Normalization: before pelleting the cells, 200 μL aliquots of the cell 
cultures are transferred into a new D48 plate containing ISOTONE 
II (Beckman Coulter) solution for biovolume (μL/mL) determina-
tion using the Multisizer Z3 (Beckman Coulter). The latter is used to 
calculate the resuspension volume for the dried metabolite extracts 
prior to LC-MS analysis. (3) Cell pelleting: fast centrifugation treat-
ment. (4) Quenching: the bottom of the plate is immerged in liquid 
nitrogen. (5) Metabolite extraction: the cell pellets are resuspended in 
pre-cooled MeOH:H2O (− 20  °C). After resuspension,  − 20  °C pre-

cooled MTBE is added for metabolite extraction. After the incubation 
step, the cell extracts of each well are transferred into 2-mL Eppen-
dorf tubes. (6) Phase separation: the cell extracts are centrifuged in 
order to achieve a phase separation between the upper organic phase 
(MTBE) and the lower aqueous phase (MeOH:H2O). (7) Sample 
evaporation: the collected phases are evaporated overnight using a 
SpeedVac vacuum device (Labconco). (8) Sample reconstitution: 
samples are reconstituted, adapting the resuspension volume to the 
biovolume (μL/mL) for the purpose of normalization. (9) Untargeted 
LC-MS analysis: the biovolume-normalized samples are analysed by 
HILIC-MS (metabolomics) or RP-LC-MS (lipidomics). Abbrevia-
tions are reported in the abbreviation list
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for feature annotation of the HILIC data was the MSMS-
Public-(Neg/Pos)-VS15.msp (available on the MS-DIAL 
website [6]).

Pre‑screening and  MS2 spectra extraction The remaining 
features underwent the pre-screening with Shinyscreen [50] 
for  MS1/MS2 alignment verification and  MS2 extraction. 
Only features that passed this quality control step were used 
for further annotation (ESM, GNPS [58]).

Annotation with MetFrag and PubChemLite The spectral 
information of features that passed the pre-screening with 
Shinyscreen were imported in MetFrag to achieve tenta-
tive identification using an early version of PubChemLite 
(PCLite, PubChemLite tier1 [61]). The R script for Met-
Frag is available on Zenodo (see ESM, Zenodo, file F10 
[59]). To simplify the annotation, the spectral information 
of the samples showing the highest MetFrag overall score 
was used. Further, the carbon and nitrogen counts obtained 
with PAVE were compared with the molecular composi-
tion of the MetFrag-PCLite candidates. The correspondence 
of the number of carbon and nitrogen atoms between the 
PAVE and MetFrag-PCLite results allowed to annotate the 
features either as Level 2A (if a MoNA score  ≥ 90% was 
present) or as Level 3 and reported as “Level 2A MetFrag” 
or “Level 3 MetFrag”, respectively. The best three MetFrag 
Level 3 candidates were reported, together with the pres-
ence of annotation information from the “Interactions and 
Pathways” section, which indicates whether candidates may 
be of biological relevance [11].

Annotation with SIRIUS CSI:FingerID The spectral infor-
mation of the features remaining without annotation were 
imported into SIRIUS CSI:FingerID [13, 14]. Adapted 
software parameters were used, and all possible ionization 
adducts for the positive and negative modes were considered. 
The carbon and nitrogen number calculated by PAVE was 
specified in the CSI:FingerID parameters (see ESM, Section 
S3) where all the available databases and default adducts 
were used. Putative results were annotated as Level 3 when a 
possible structure candidate was found or as Level 4 in case 
of an unequivocal chemical formula match and reported as 
“Level 3 SIRIUS” or “Level 4 SIRIUS”, respectively.

Unknown features The remaining orphan features were 
annotated as “Level 5” with the PAVE-calculated carbon 
and nitrogen numbers.

Manual quality control of credentialed features To esti-
mate the quality of the computational pipeline results, a 
manual quality control step was conducted for the features 
that passed the above presented computational workflow 
using the Xcalibur software (Qual Browser, Thermo Fisher 

Scientific). Here, the carbon and nitrogen count information 
obtained with PAVE was used to calculate the mass shift in 
the 13C, 15N, and uniformly labelled condition (13C15N) of 
each feature. Features for which a corresponding unlabelled/
uniformly labelled mass shift could not be confirmed upon 
this manual inspection were discarded and reported as false-
positive credentialed features. The percentage was calculated 
as the ratio between false-positive credentialed features to 
the total amount of features which passed the computational 
pipeline. A schematic representation of the experimental 
setup and data analysis pipeline is shown in Fig. 2.

Lipid analysis Only the first annotation step using MS-DIAL 
and the subsequently mass shift quality control with Shiny-
screen were applied for the lipidomic analysis. The creden-
tialed and curated lipid features were imported in MS-DIAL 
and putatively annotated as “Level 3 MS-DIAL” by a dot 
product  ≥ 40% [54]. Less strict annotation criteria compared 
to the HILIC data were used, since only an in silico spectral 
database was used for annotation.

Level 1 metabolite identification Authentic reference stand-
ards were used to achieve Level 1 identification using an RT 
matching window of ± 0.2 min, a mass accuracy ± 10 ppm, 
and  MS2 spectral matching. The identification results are 
provided in the supplementary files (see ESM, Zenodo, file 
F13 [59]).

Data visualization and statistical analysis Data visualiza-
tion and statistical analysis were only applied to the metab-
olomics (not lipidomics) data, where credentialed peak 
heights were normalized to the IS (4-chloro-L-phenylala-
nine). The normalized data were uploaded to MetaboAnalyst 
5.0 and Pareto-scaled prior to principal component analysis 
(PCA). Excel was used to calculate the coefficient of vari-
ance (defined as ratio between standard deviation and sig-
nal intensity average, CV %) distribution between the two 
approaches and generate histograms. A one-way analysis of 
variance (ANOVA) followed by FDR-corrected and Tukey’s 
HSD post hoc tests (p value  < 0.01) was conducted in R to 
compare metabolic changes between groups. The results of 
the statistical analysis are available in the supplementary 
files (see ESM, Zenodo, file F12 [59]).

Results and discussion

In this part of the study, we aimed to benchmark our pro-
posed high-throughput approach for yeast cultivation and 
sample generation for credentialing-based untargeted metab-
olomics against a classical shake flask (SF) approach, by 
comparing physiological parameters such as growth and glu-
cose uptake rates and intracellular succinate concentration, 
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as well as credentialing and annotation results. Furthermore, 
we discuss the distribution of CV values and investigated 
metabolic differences between the analysed WT and KO 
strains using a parametric ANOVA test (Turkey’s HSD).

Physiological constraints and intracellular succinate 
concentration

The growth and glucose uptake rates were monitored in the 
control yeast strain cultivated in D48 and SF format. Similar 
linear ranges of the growth rate (0.37 and 0.36  h−1, respec-
tively) and glucose consumption (4.17 and 3.45 mM∙h−1, 
respectively) were observed in both cultivation modes (ESM, 
Figures S1–3). In the SF condition, cells entered the glucose 
consumption phase earlier than in the D48 condition. We 
speculate that fine differences at the level of gene expression 
or other regulatory processes govern the entry into the high 
glucose uptake phase slightly differently in both experimental 
setups. Recently, deep-well well cultivation of Pseudomonas 
putida and Pseudomonas aeruginosa showed no remark-
able differences in substrate assimilation compared to the SF 
approach, suggesting that deep-well based high-throughput 

methods represent a robust and flexible technique for per-
forming microbial metabolic profiling [45]. The highly com-
parable bioprocess parameters obtained here suggest indeed 
that budding yeast, likewise, features very similar metabolic 
behaviour in deep-well cultivation as in the classical shaking 
flask format. Next, we cultivated a yeast strain deficient in 
the SDH1 gene (KO), encoding the FAD-binding subunit of 
succinate dehydrogenase, and the corresponding control strain 
(WT) under SIL in the D48 and SF setups, and measured 
the intracellular succinate concentration using an innovative 
quantification approach based on spiking the 13C-labelled 
cell extracts with standard 12C-succinate. We observed the 
expected increase in the intracellular succinate concentration 
in the KO compared to the WT strain and the calculated KO/
WT -fold change (FC) values were comparable with previ-
ously reported values [44] (see ESM, Zenodo, file F01 [59]). 
These results, summarized in Fig. 3, suggest that our D48 
method should yield metabolomic results consistent with the 
classical SF approach. Moreover, by applying the proposed 
quantification method, we showed that the uniformly labelled 
cell extracts can be used in a versatile way for the quantifica-
tion of intracellular metabolite concentrations, allowing for 

Fig. 2  Experimental and computational pipelines used in this study. 
Yeast WT (ho:kanMX) and KO (sdh1Δ) strains were cultivated in 
the presence of unlabelled and/or labelled substrates in a D48 well 
plate and SF, followed by extraction of polar and nonpolar metabo-
lites for LC-HRMS analysis. The raw data obtained was processed 
with the MS-DIAL peak-picker to obtain a feature list for the PAVE 
workflow. Credentialed features underwent a mass shift quality con-
trol using Shinyscreen. Features with confirmed mass shift were 

imported into MS-DIAL for Level 2A annotation. The  MS2 spectra 
of the remaining, non-annotated features were extracted with Shiny-
screen and annotated as Levels 2A–3 with MetFrag combined with 
the PubChemLite (PCLite) chemical database, or as Levels 3–4 with 
Sirius CSI:FingerID. The non-annotated features are reported as 
Level 5 with their relative carbon and nitrogen number. Abbreviations 
are reported in the abbreviation list
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reduced experimental costs by circumventing the need for 
expensive labelled standards.

Credentialing results

The data generated from the (un)labelled samples for each 
strain and experimental setup were processed individually 

with the PAVE software [41]. One reason for choosing the 
PAVE approach was to minimize dilution of low-abundant 
intracellular signals that may result from mixing unlabelled 
and labelled cell extracts as performed in other credential-
ing approaches [36, 40]. Tables 1 and 2 summarize the 
results of the credentialing analysis for the metabolomics 
data acquired in the positive and negative ionization modes, 

Fig. 3  Quantification of intracellular 13C-Succinate in yeast WT and 
KO strains following classical SF or D48 cultivation. A The 13C uni-
formly labelled cell extracts (black,  MS1 signal) were spiked with 
unlabelled succinate (light blue,  MS1 signal). B Calculated intra-
cellular concentration of 13C succinate for the yeast WT and KO 
strains after applying the D48 (D48-KO/WT) or SF (SF-KO/WT) 

approaches. The bar plot values refer to means ± SDs for three bio-
logical replicates. The 13C succinate concentrations calculated in μM 
amount to 24.5 ± 2.0 (D48-WT), 16.2 ± 6.3 (SF-WT), 166.0 ± 29.2 
(D48-KO), and 141.3 ± 19.0 ( SF-KO). The resulting fold changes 
(KO/WT) were 7.2 ± 0.2 (D48) and 9.0 ± 0.9 (SF). Abbreviations are 
reported in the abbreviations list

Table 1  Feature statistics 
following the PAVE-supported 
analysis of the HILIC-HRMS 
data acquired in positive 
ionization mode

*Credentialed features that passed mass shift quality control criteria in Shinyscreen (i.e. showing the 
expected mass shift in the uniformly labelled 13C15N cultivation condition). Bold font indicates retained 
features that were used in the following workflow steps

PAVE output HILIC-HRMS, positive ionization mode

D48-WT D48-KO SF-WT SF-KO

Total detected features 16,518
Adduct 666 532 572 591
Background 12962 13931 14138 13981
Dimer 22 13 14 16
Fragment 22 43 58 79
Heterodimer 36 31 24 27
Isotope 142 115 118 116
Low carbon count 95 84 65 61
Low score 759 440 256 301
Multicharge 53 30 21 27
Discarded features 14757 15219 15266 15199
Discarded features (%) 89.3% 92.1% 92.4% 92%
Credentialed features 1761 1299 1252 1319
Credentialed features (%) 10.7% 7.9% 7.6% 8%
Total unique credentialed features per setup 2077 1656
Total unique credentialed features per setup (% 

vs. total detected features)
12.6% 10.0%

Retained features* 1115 908
Retained features (%) 6.8% 5.5%
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describing the number of discarded features (e.g. adducts, 
background peaks, dimers, fragments, heterodimers, iso-
topes, low carbon counts, low scores for chemical formula 
assignment with Pearson’s correlation coefficient  < 0.5, 
multicharges) and retained credentialed features [41]. We 
also report the total number of unique credentialed features 
detected per experimental setup obtained after merging the 
credentialed feature lists for the WT and KO strains by the 
different experimental setups (i.e. SF and D48) and remov-
ing duplicates. Duplicate entries were removed using the 
initial feature list generated by the MS-DIAL peak-picker. 
Prior to the credentialing analysis using PAVE, all the ana-
lysed samples (unlabelled condition for WT and KO for the 
SF and D48 approach, including extraction and procedurals 
blanks), were processed using MS-DIAL, and a list of fea-
tures resulting from this common alignment was generated. 
This common alignment enabled the assignment of a unique 
numeric ID to each feature using MS-DIAL. The common 
alignment feature list was used as input for the PAVE data 
analysis in MATLAB, and the generated credentialed fea-
tures conserved the numeric ID assigned using MS-DIAL. 
This unique numeric ID was used to eliminate duplicates 
value by merging the credentialing results outcoming from 
the different strains but from the same experimental setups. 
These total unique credentialed features list per experimental 
setup underwent the automated credentialing quality control 

check using Shinyscreen (filtering for features showing the 
expected mass shift in the uniformly labelled 13C15N cultiva-
tion conditions). The resulting retained features were used 
for the subsequent steps in our data analysis pipeline and for 
further comparison of the D48 and SF methods.

The number of discarded (e.g. adducts, background) and 
credentialed features for the different strains and experimen-
tal conditions following the metabolomics analyses is highly 
comparable (Tables 1 and 2). Multiple processing attempts 
revealed that the best way to apply the PAVE approach and 
perform comparative metabolomics between WT and KO 
strains was to process the data from the different strains 
or conditions separately. We assume that processing WT 
and KO samples together proved to be problematic for the 
ATOMCOUNT function in PAVE which uses peak inten-
sity (within a given threshold, e.g. applied threshold 0.5) 
as the criterion to identify credentialed features [41] and 
undoubtedly can be highly strain or condition dependent 
(e.g. genetic background, cultivation method, supplemen-
tations). Processing the strains and conditions separately 
increased the data analysis time but yielded comparable 
percentages of credentialed features to Wang and co-authors 
(between 3.1–4.6% [41] versus 5.1–6.8%, herein for the D48 
experimental setup) who analysed single strains grown in a 
single condition, suggesting that the applied data processing 
method is suitable. Compared to Wang and co-authors, we 

Table 2  Feature statistics 
following the PAVE-supported 
analysis of the HILIC-HRMS 
data acquired in negative 
ionization mode

*Credentialed features that passed mass shift quality control criteria in Shinyscreen (i.e. showing the 
expected mass shift in the uniformly labelled 13C15N cultivation conditions). Bold font indicates retained 
features that were used in the following workflow steps

PAVE output HILIC-HRMS, negative ionization mode

D48-WT D48-KO SF-WT SF-KO

Total detected features 19828
Adduct 77 46 172 156
Background 18308 18384 18041 18108
Dimer 2 1 22 13
Fragment 40 13 152 96
Heterodimer 5 0 33 26
Isotope 94 42 135 123
Low carbon count 50 24 68 60
Low score 239 270 90 127
Multicharge 6 0 3 2
Discarded features 18821 18780 18716 18711
Discarded features (%) 94.9% 94.7% 94.4% 94.4%
Credentialed features 1007 1048 1112 1117
Credentialed features (%) 5.1% 5.3% 5.6% 5.6%
Total unique credentialed features per setup 1441 1400
Total unique credentialed features per setup (% 

vs. total detected features)
7.3% 7.1%

Retained features* 1004 705
Retained features (%) 5.1% 3.6%
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used less stringent credentialing parameters (e.g. Pearson 
correlation coefficient cut-off of 0.75 by PAVE and 0.5 in 
this work; for complete parameter setting see ESM, Sect. 3) 
that was compensated for by our downstream quality con-
trol steps. This modification allowed us to better retain false 
negatives that were otherwise discarded by the software, 
which is particular useful for our practical application and 
research interest relative to metabolites mapping of canoni-
cal and non-canonical metabolites (the latter known to be 
less abundant and more challenging to detect). Ultimately, 
our workflow results in high-quality credentialed features 
(i.e. “retained features”) to use in our annotation approach. 
The percentage of credentialed features obtained via lipid-
omics for the nonpolar extracts using PAVE and Shinyscreen 
is reported in the ESM (Sect. 2, Tables S1–2).

Results of feature annotation

Annotation of the credentialed yeast polar metabo‑
lome Following feature credentialing with PAVE and 
quality control using Shinyscreen, we proceeded with our 
hierarchical step-by-step annotation approach. The first step 

matched features with the integrated  MS2 spectral database 
in MS-DIAL, and the positively identified features (ESM, 
Zenodo, file F09 [59]) were labelled as Level 2A  (MS2 spec-
tral database matching). The remaining features were further 
processed with Shinyscreen to perform a pre-screening qual-
ity control step to verify  MS1/MS2 alignment prior to  MS2 
spectral extraction. This spectral information was used for 
further analyses in MetFrag combined with PCLite or SIR-
IUS CSI:Finger ID. Finally, the quality of the credentialing/
annotation results was checked manually by recovering the 
signals for the annotated features to determine the percent-
age of false-positive entries (i.e. that were credentialed via 
the automated workflow, but for which the expected mass 
shift in the fully labelled condition could not be confirmed 
manually). The processing and annotation results for creden-
tialed polar metabolites are summarized in Tables 3 and 4.

The aim of this work was to compare the credentialing and 
annotation performance in our developed high-throughput 
D48-well approach with the low-throughput, classical SF 
cultivation format, in addition to showing a potentially appli-
cation of credentialing in the D48 approach. With the goal 
to generate a list of annotated features, in an automated and 
unbiased way, to use the resulting feature lists as a met-
ric for method comparison, the credentialed features were 
annotated by applying defined rules. With MS-DIAL, for 
instance, a Level 2A was assigned based on parameters such 
as a minimum dot product of 50% and a fragment presence 
(i.e. irrespective of intensity) of 50% by comparison of the 
experimental results with a freely available  MS2 spectral 
database. We did not modify the annotation results and 
included duplicate annotation entries (e.g. isobars with dif-
ferent RT time and fulfilling the criteria for  MS2 spectral 
match with the reference  MS2 experimental database) and 
less likely biological molecules or potential fragment mol-
ecules that were not successfully discarded by PAVE (e.g. 
MS-DIAL ID 1190 [M+H]+, 3-methylpyrazole, PubChem 
CID 15073; MS-DIAL ID 1366 [M+H]+, morpholine, 

Table 3  Pre-screening results of Shinyscreen for the HILIC-HRMS 
data acquired in positive and negative ionization modes. Features 
with an acceptable  MS1/MS2 alignment underwent annotation with 
MetFrag-PCLite and SIRIUS CSI:FingerID

HILIC, positive 
ionization

Processed features HILIC, negative 
ionization

D48 SF D48 SF

1115 908 Retained features 1004 705
110 106 Level 2A MS-DIAL 83 95
1005 802 Retained features  

(without level 2A MS-DIAL)
921 610

286 264 MS1/MS2 alignment 214 215
28.5% 32.9% MS1/MS2 alignment  

(% vs. retained features)
23.2% 35.2%

Table 4  HILIC-HRMS-based 
annotation results for the 
credentialed features (positive 
and negative ionization modes) 
with their absolute value per 
experimental setup (abs. value) 
and relative percentage (%) 
to the features with an  MS1/
MS2 alignment. False-positive 
percentage refers to the ratio 
of the annotated features in 
which a mass shift could not 
be confirmed manually in the 
labelled raw data to the total 
amount of annotated features 
prior the mass shift quality 
control

HILIC, positive ionization Total annotated features HILIC, negative ionization

D48 SF D48 SF

286 263 214 215

Abs. value [%] Abs. value [%] Confidence level Abs. value [%] Abs. value [%]

110 38.5 106 40.2 Level 2A MS-DIAL 83 38.8 95 44.2
5 1.7 3 1.1 Level 2A MetFrag 0 0 2 0.9
107 37.4 96 36.4 Level 3 MetFrag 50 23.4 46 21.4
11 3.8 9 3.4 Level 3 SIRIUS CSI:FingerID 30 14 19 8.8
11 3.8 9 3.4 Level 4 SIRIUS CSI:FingerID 8 3.7 5 2.3
42 14.7 40 15.2 Level 5 43 20.1 48 22.3
8% 7% False-positive (no-mass shift/

total annotated)
15.4% 12.6%
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PubChem CID 8083). As summarized in Table 3, the total 
amount of annotated features that passed the final manu-
ally curated mass shift quality control step (286 and 264 in 
the positive ionization mode, for the D48 and SF samples, 
respectively; 214 and 215 in the negative ionization mode, 
for the D48 and SF samples, respectively) was lower com-
pared to the number of credentialed features that had passed 
the mass shift quality control with Shinyscreen (1115 and 
908 in the positive ionization mode, for the D48 and SF 
samples, respectively; 1004 and 705 in the negative ioniza-
tion mode, for the D48 and SF samples, respectively) and 
referred to as “Retained features” in Tables 1, 2, and 3. This 
is due the fact that the MS data acquisition was performed 
in DDA mode and only credentialed features with an  MS1 
aligned with detected  MS2 events were used for the annota-
tion (obtained with Shinyscreen and referring to “MS1/MS2 
alignment” in Table 3) and some of the features that passed 
the automatic mass shift quality control with Shinyscreen 
were erroneously retained. We report these erroneously 
retained features and explain these as the overall false-pos-
itive entry generated by the proposed computational pipe-
line. Our results underlie the fact that often a combination 
of different software could be challenging in the praxis and 
parameters setting and especially fine tuning of these affect 
the outcome of an untargeted analysis. In this works, we 
aim to show and propose a way to combine open-source 
software and conduct metabolomics data analysis without 
coding knowledge using community-developed software 
with user-friendly interfaces. Furthermore, we would like to 
show the value of credentialing information, which enables 
us to validate the biological origin of features and inevitably 
allows us to confidently answer biological questions. Despite 
this, the annotation results, summarized in Table 4, led to 
a comparable number of annotated features per confidence 
level for the D48 and SF experimental setups, in both ioni-
zation modes, with also comparable false-positive percent-
ages, determined after the final manual mass shift quality 
control. To assess the biological relevance of the annotation 
results, we performed an InChIKey-based search against 
the Yeast Metabolome Database (YMDB) [18, 19] and the 

Human Metabolome Database (HMDB) [16, 17]. For this, 
we used the InChIKeys obtained by the MS-DIAL annota-
tion (Level 2A MS-DIAL) and generated an InChIKey list 
without duplicates entries. The number of exact InChIKey 
matches and of exact InChIKey first block matches between 
the annotated HILIC-HRMS features and both databases is 
shown in Table 5. A full analysis is available in the ESM 
(Zenodo, file F14 [59]).

The InChIKey-based database search also revealed highly 
comparable numbers of database matches between the D48 
and SF experimental setups for both ionization modes 
(Table 5). All this further indicated that the D48 cultiva-
tion and sample generation approach represents a solid basis 
for unbiased metabolite mapping in yeast. Intriguingly, the 
HMDB-based database search resulted in more matches than 
YMDB (Table 5). This suggests that potentially more of 
the metabolites reported in HMDB (220,945 small molecule 
entries, last updated 2022) are to be found in yeast, although 
not yet reported in YMDB (16,042 small molecule entries, 
last updated 2017). The HMBD annotation results that are 
not present in YMDB would still have to be confirmed with 
authenticated chemical standards. However, the InChIKey-
based database search results show how the choice of the 
chemical database used in a biological study may influence 
the biological interpretation of the resulting annotation, 
and the choice of the reference chemical database has to 
be considered when judging the annotation results in the 
context of a specific biological study. An important consid-
eration was how our results compared to the ones of Wang 
et al. (2019), although a direct comparison was challeng-
ing due to differences in metabolite extraction and LC-MS 
methods, instrumentation, and metabolite confidence level 
reporting. To simplify the comparison, we decided to only 
compare the 500 features annotated in our D48 method 
with their 221 annotated features using the first block of 
the unique InChIKey entries. These were obtained by con-
verting their metabolite list (found in their supplementary 
information under “Annotation of all peaks” in the filename 
“ac8b03132_si_004.xls”) to InChIKeys using the PubChem 
Identifier Exchange Service [62]. Of the 221 overall 

Table 5  InChIkey recovery 
comparing YMDB and HMDB 
with the annotated features from 
the HILIC-HRMS data analysis. 
“POS” and “NEG” refer to 
the positive and negative 
ionization modes, respectively. 
Absolute values (Abs. value) 
and percentage matches to the 
total unique Level 2A annotated 
features per experimental setup 
are reported

Unique Level 2A MS-DIAL per experimental setup Level 2A MS-DIAL POS/NEG

D48 SF

112 115

InChIKey match Abs. value [%] Abs. value [%]

Exact InChIKey match in YMDB 31 27.4 30 26.1
Exact InChIKey First Block (skeleton) match in YMDB 81 71.7 83 72.2
Exact InChIKey match in HMDB 44 38.9 42 36.5
Exact InChIKey First Block (skeleton) match in HMDB 101 89.4 103 89.6
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annotated metabolites by Wang et al. (2019), 136 unique 
InChIkeys were obtained, while 417 unique InChIKeys were 
obtained for the 500 features annotated in our work. Only 56 
metabolites overlapped in the two studies, while 80 metabo-
lites were unique to Wang et al. (2019) and 341 unique to our 
pipeline (results available in ESM, Zenodo, file F15 [59]). 
The major difference in our annotation workflow is that it 
expanded beyond Levels 1 and 2 annotation and included in 
silico fragmentation (Level 3 annotation) and unequivocal 
chemical formula assignment (Level 4 annotation, although 
this does not yield InChIKeys). The reported unknown fea-
tures in PAVE were 22.1% and 30.3% (205 of 926 and 209 
of 690 credentialed features for the positive and negative 
ionization modes, respectively) of the total credentialed fea-
tures [41]. This is slightly higher than the Level 5 feature 
numbers reported in this study (Table 4, 14.27% and 20.1% 
Level 5 features of the total retained features with  MS1/MS2 
alignment in positive and negative ionization mode with 
the D48 method). Nevertheless, both studies highlight that 
many unknown metabolites remain to be elucidated in the 
yeast metabolome and credentialing represents an impor-
tant approach for tackling this knowledge gap. As recently 
demonstrated, the additional spatial selectivity gained by 
coupling HRMS to ion mobility spectroscopy may further 
enhance credentialing efforts and annotation confidence 
[63]. Moreover, identification is not limited to exact mass 
and collecting biologically relevant  MSn spectra but also 
having the relevant chemical databases for annotation as 
shown by the discrepancy between YMDB, HMDB, and 
PubChemLite. Tools to predict metabolites resulting from 
enzymatic side activities [64], non-enzymatic chemical dam-
age, and biotransformation reactions [65, 66] provide use-
ful resources for expanding chemical databases beyond the 
known chemical space. However, it remains difficult to vali-
date good candidates beyond in silico approaches if authen-
ticated standards or  MS2 spectra are not available. Never-
theless, the confidence in the biological origin of detected 
features gained through credentialing approaches provides 
motivation to pursue the identification of unknown or low-
level peaks that would normally be discarded. Recently, SIL-
based credentialing metabolomics analyses in erythrocytes 
infected with the malaria parasite Plasmodium falciparum 
provided the basis for comparison and identification of gaps 
within the metabolic model of the disease, where 41% of 
the metabolome predicted from the parasite’s genome was 
covered in their multi-method analysis of polar extracts with 
GC-MS and LC-MS and nonpolar extracts using LC-MS 
[67]. Importantly, their analysis revealed the existence 
of non-canonical (non-predicted) metabolites and aided 
enzyme function discovery, further illustrating the utility 
of credentialing as a tool in completing metabolic networks.

Potential of using credentialing to facilitate lipid annota‑
tion Analogous to the annotation of polar metabolites, we 
applied our rule-based annotation approach to the lipid data. 
As the lipid data analysis was done mostly as a feasibil-
ity check without prior parameter optimization or further 
refinement of the algorithm, the summarized annotation 
results of the relatively low number of credentialed features 
retrieved are reported in the ESM (Sect. 2.1., Table S3) and 
not described further here. One example of credentialed lipid 
molecule, putatively annotated as 1-tetradecyl-2-acetyl-sn-
glycero-3-phosphocholine (PC (O-16:0), is shown in Fig-
ure S4 with related mass shift across the labelled conditions 
and match between the experimental and predicted  MS2 
spectra.

Credentialing is a strategy that, to the best of our knowl-
edge, has not been applied to assist in the annotation of 
lipids, yet it offers solutions for some challenges in the field, 
such as signal deconvolutions, elimination of in-source frag-
ment signals or de-adducting (as highlighted in the PAVE 
workflow [41]), and the quantification of lipid species which 
is normally difficult due to lack of isotope-labelled chemi-
cal standards [68]. The confirmed biological origin together 
with chemical formula information obtained with credential-
ing (e.g. observed mass shift and related carbon/nitrogen 
counts) may assist with correct feature annotation and help 
to discriminate between different lipid candidates. Addition-
ally, spiking 13C-labelled lipid extracts with non-labelled 
lipid standards could help improve intracellular lipid quan-
tification and thus provide deeper insights into lipid metabo-
lism dynamics or turnover occurring during biological pro-
cesses or disease development [69–71]. The raw data from 
the RP-LC-HRMS analysis of (un)labelled nonpolar extracts 
derived from all cultivations tested in this study are available 
as an open access data set (see ESM, GNPS [58]).

Feature variance in the D48 approach

A potential limitation with our D48 cultivation and extrac-
tion method is that it could introduce more experimental var-
iance in comparison to the SF approach. First, we performed 
PCA to visualize the variance between D48 unlabelled 
metabolite extractions, extraction blanks, and procedural 
blanks. Procedural blanks (Fig. 4, “BLANK”) consisted of 
the resuspension solvent with IS, while extraction blanks 
(Fig. 4, BLANK-GLU) were samples generated from wells 
of the D48 plate containing 12C-YNB medium (with glu-
cose) only that went through the entire experimental pipe-
line. Normalized peak intensities of the annotated features 
from both ionization modes of the HILIC-HRMS analyses 
for the D48 well format were imported to MetaboAnalyst 
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5.0 [48]. As shown in Fig. 4, a partial separation between 
the WT and KO samples is observed by principal compo-
nent analysis. This partial separation seems in line with the 
results obtained in the quantitative approach used by Ewald 
et al. (2009) to compare intracellular concentrations of cen-
tral carbon metabolites of the same yeast strains [44]. In 
this previous study, accumulation of the substrate (succinate) 
of the deleted enzyme was by far the most prominent dif-
ference observed between the sdh1Δ and the WT strains, 

while similar or indistinguishable levels were found for 
other central carbon metabolism intermediates. Procedural 
and extraction blanks grouped closely together, suggest-
ing that their profiles are nearly identical. The clear sepa-
ration between the blank and biological samples strongly 
suggests that there was negligible cross-over to other wells. 
Supporting this, the average normalized peak intensities 
of the biological and extraction blank samples were cal-
culated and compared. From the total amount of analysed 
features (n = 500 times two strains, Σ = 1000), 956 showed 
fold change values  > 5 between biological and extracted 
12C-YNB media blank samples (“BLANK-GLU”, median 
FC = 60 with  90th percentile = 327.2), indicating that negli-
gible cross-contamination between the wells occurred during 
cultivation and metabolite extraction.

Since PCA represents an exploratory data analysis 
method, we next examined the CV distribution of cre-
dentialed annotated features between the D48 and SF 
approaches to compare experimental variance. CV values 
should represent the total variability induced through all 
the steps of the experimental pipeline, and their distribution 
allows to assess the precision, reproducibility, and suitabil-
ity of the experimental setups [40]. For each experimental 
setup, the CVs of the annotated features in both strains were 
calculated, and the distribution was split up into 5% bins and 
visualized with histograms (Fig. 5). The CV values for the 
D48 experimental setup (Fig. 5A) showed a wider distribu-
tion compared to the SF approach (Fig. 5B). The median 
CV value of the D48 setup was 34% with a 90th percentile 
of 66%, whereas the median CV value for the SF approach 
amounted to 15% with a 90th percentile of 39%. Comparing 
the D48 and SF approaches, 52.5% and 87.4% of the fea-
tures, respectively, had lower CV values than 35% (see ESM, 
Zenodo, file F16 [59]). As observed by others before [44], 
this shows that using multi-well plate-based cultivation and 
extraction methods for increased throughput in microbial 
sample generation for metabolomics analyses comes at the 

Fig. 4  PCA score plot of the annotated credentialed features from the 
HILIC analysis of the D48 cultivation. Green dots: extraction blank 
samples (BLANK-GLU, n = 8). Red squares: procedural blank sam-
ples (BLANK, n = 3). The dashed zone shows the section of the PCA 
plot, where extraction and procedural blanks overlap. Purple trian-
gles: KO samples from the D48 method (D48-KO, n = 3). Light blue 
diamonds: WT samples from the D48 method (D48-WT, n = 3)

Fig. 5  CV distribution for annotated credentialed features measured through the D48 (A) and SF (B) approaches. The bar plot represents the 
number of features inside 5% CV bin intervals, whereas the red line shows the cumulative frequency
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price of higher errors and experimental variability. Specifi-
cally in our approach, we assume that the higher observed 
experimental variation was mainly introduced through the 
different pipetting steps using a multichannel pipette (sample 
normalization and metabolite extraction, see the “Materials 
and Methods” section) and less precise handling possibilities 
when working in a multiplex format compared to processing 
single samples individually, as also noted previously [44]. 
Blank subtractions or CV cut-off thresholds between 20 and 
30% are commonly used in untargeted metabolomics data 
analysis pipelines for feature prioritization [72]. Applying 
a 35% CV cut-off in our data would discard approximately 
50% and 13% of the features detected with the D48 and SF 
approaches, respectively. Prioritizing the subsequent annota-
tion effort for a subset of features using a CV cut-off would 
improve the significance of the obtained results. However, 
by applying this strategy, low-abundant signals or features 
with higher variance due to very low intracellular concen-
tration or non-specific detection, would not be annotated. 
This means that precious information about unknowns or 
non-canonical metabolites would not be considered further. 
Credentialing-based metabolomics data analysis does not 
depend on a posteriori statistical significance for feature pri-
oritization. While the higher dispersion of the metabolomics 
data after D48 cultivation and sample generation can thus 
be overcome in combination with credentialing strategies for 
feature prioritization and may not greatly affect metabolite 
and pathway mapping in microorganisms, it nevertheless 
makes it more challenging to detect subtle metabolite level 
changes in comparative analyses between different strains or 
conditions than with classical, low-throughput approaches.

Impact of genetic background and cultivation 
approach on metabolism

To explore the utility of the presented methods to investigate 
the metabolic impact of genetic alterations, the metabolic 
perturbations induced by succinate dehydrogenase defi-
ciency in yeast were investigated based on the credentialed 
D48 and SF metabolomic datasets. A parametric ANOVA 
followed by FDR-corrected, Tukey’s HSD post hoc tests 
(p < 0.01) was performed in R using normalized peak height 
intensities of metabolites present in both experimental set-
ups (n = 327; see ESM, Zenodo, file F16 [59]). We found 
that 52 or 15.9% of features showed statistically significant 
differences between the groups tested (D48-WT/KO and 
SF-WT/KO), with 32 or 9.8% of the total features showing 
an opposite WT versus KO trend in both experimental setups 
(ESM, Zenodo, file F16 [59]). Metabolite changes in the 
same direction between WT and KO in both experimental 
setups are interesting to consider as robust consequences 
of the genetic perturbation that are maintained in different 
environments. Metabolites showing opposite trends in WT 

versus KO in both experimental setups may be more affected 
by the different cultivation formats (D48 versus SF) than by 
the gene deletion.

As described above and previously described by others 
[44], succinate levels were significantly higher (Fig. 6A; 
D48-WT vs. D48-KO p value = 2.61∙10−4, SF-WT vs. 
SF-KO p value = 2.08∙10−5) in the sdh1Δ strain com-
pared to the WT strain in both approaches. The calcu-
lated FCs between KO and WT strains amount to 3.0 for 
the D48 and 4.3 for the SF approach. These values differ 
from the FCs calculated using the above presented quan-
tification approach (FCs of 7.2 ± 0.2 and 9.0 ± 0.9 found 
with the D48 and SF samples, respectively), which are 
based on absolute concentrations instead of relative val-
ues (normalized peak height). The intracellular succinate 
concentration change is the most proximal effect expected 
from the gene deletion, as succinate is the substrate of the 
enzyme deficient in the analysed KO strain. Interestingly, 
we observed that xanthurenate showed the exact opposite 
trend to succinate, with depleted levels in the KO strain 
compared to the WT strain in both experimental setups 
(Fig. 6B; D48-KO vs. D48-WT: p = 7.26∙10−4, FC = 0.27; 
SF-KO vs. SF-WT: p = 2.2∙10−4, FC = 0.27). Xanthure-
nate is formed through transamination of the tryptophan 
catabolic pathway (or kynurenine pathway) intermediate 
hydroxykynurenate [73]. Kynurenate, another kynurenine 
pathway derivative [74], showed also the exact opposite 
trend to succinate with decreased levels in the KO strain 
compared to the WT strain, but this feature only showed 
statistical significance in the ANOVA (overall p = 0.008) 
with post hoc tests failing to show significance for the 
SF samples (Fig.  6C; D48-KO vs. D48-WT: p = 0.02, 
FC = 0.49; SF-KO vs. SF-WT: p = 0.16, FC = 0.71). The 
observed differences in the levels of succinate, xanthure-
nate, and kynurenate are intriguing, since succinate dehy-
drogenase deficiency can cause the development of rare 
neuroendocrine tumours (e.g. bladder tumours [75]) and 
succinate ranks amongst the known oncometabolites [76, 
77]. Furthermore, perturbations in tryptophan metabolism 
and increased excretion of tryptophan intermediates were 
observed in mouse models and patients with bladder can-
cer [78]. This preliminary data demonstrates a potential 
enhanced excretion of xanthurenate and kynurenate by the 
sdh1Δ KO compared to the WT. Further experiments are 
needed to validate these preliminary findings; however, 
they may support a link between succinate dehydroge-
nase deficiency and perturbation in tryptophan catabo-
lism that could be useful to explore for cancer research. 
In this regard, our metabolomic dataset may represent an 
interesting resource for uncovering conserved metabolic 
perturbations caused by succinate accumulation that may 
potentially contribute to tumorigenesis, but further con-
firmation is needed for corroborating this hypothesis. 
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Potentially, the quantification strategy proposed in this 
work, based on the use of non-labelled standards in fully 
labelled extracts (see “Material and methods”, subsection 
Intracellular succinate quantification), could be applied 
for future targeted studies that aim to quantify a poten-
tial relationship between SDH1 deficiency and perturba-
tion of tryptophan metabolism at reduced costs. As the 
kynurenine pathway leads to de novo nicotinamide adenine 
dinucleotide  (NAD+) synthesis [74], we looked into the 
levels of this cofactor in our credentialed metabolomic 
dataset. Notably, a feature having the expected m/z value 
for  NAD+ and the same RT as standard  NAD+ was dis-
carded as a background signal with PAVE in the D48 sam-
ples but successfully credentialed and annotated as  NAD+ 
in the SF samples. The expected  NAD+ mass shift was 
manually confirmed by comparing unlabelled and labelled 
data from both the D48 and SF samples, exemplifying that 
going back to the (un)labelled raw data may help retriev-
ing false-negative signals and enhance feature annota-
tion. The observed intracellular  NAD+ signals showed 
about twofold changes between WT and KO strains, but 
with opposite directionalities in the D48 and SF samples 

(Fig. 6D), thus indicating that the effect of SDH deficiency 
on  NAD+ levels is strongly dependent on the cultivation 
format. Furthermore, gluconate showed a decreased sig-
nal in the KO strain compared to the WT strain using the 
D48 approach (FC = 0.42), whereas in the SF approach, 
the gluconate signals showed comparable levels in both 
strains (Fig. 6E; ANOVA p value = 0.007; post hoc tests 
failed to show significance). Gluconate can be derived 
from the pentose phosphate pathway by dephosphoryla-
tion of 6-phosphogluconate [79] and higher gluconate 
levels could indicate that the pentose phosphate pathway 
has an enhanced activity in the D48-WT group compared 
to the other biological groups. Supporting this assump-
tion, the intracellular histidine signal showed the same 
intensity level pattern and WT vs. KO trend as the gluco-
nate signal (Fig. 6F; ANOVA p value = 9.0∙10−3). Since 
phosphoribosyl pyrophosphate is produced from the pen-
tose phosphate pathway intermediate ribose-5-phosphate 
and is a precursor of histidine [80] (both not detected or 
annotated by the applied LC-MS method and annotation 
pipeline), an enhanced pentose phosphate pathway activ-
ity could provide more phosphoribosyl pyrophosphate, 

Fig. 6  Box plot of the selected 
differential metabolites in D48 
and SF conditions. Statistical 
significance was evaluated using 
a one-way ANOVA followed 
by Tukey’s HSD post hoc test 
(p < 0.01) from the HILIC-
HRMS analyses. Metabolites 
were grouped by signals 
showing the same (succinate, 
xanthurenate, and kynurenate) 
or opposite  (NAD+, gluconate, 
histidine) trends. The identities 
of succinate (A), xanthurenate 
(B), kynurenate (C),  NAD+ (D), 
gluconate (E), and histidine (F) 
were confirmed (Level 1)
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resulting in higher histidine biosynthesis, as previously 
observed in biotechnological optimized microorganisms 
[81]. The reason behind the higher gluconate levels in the 
D48-WT group compared to all other groups remains cur-
rently unknown.

Conclusions

In this work, we combined a credentialing method (PAVE 
approach [41]) based on stable isotope labelling with high-
throughput yeast cultivation (D48) and extraction to per-
form untargeted metabolomics using LC-HRMS, followed 
by an elaborate pipeline of quality control steps and com-
pound annotation tools and finally, manual curation steps. 
Growth and glucose uptake rates of the high-throughput 
yeast cultures were highly comparable to the ones of clas-
sical SF cultures. We proposed a new intracellular quanti-
fication strategy, by spiking 13C-labelled cell extracts with 
non-labelled standard, a method that does not depend on 
using expensive labelled chemical standards. We adapted 
our cultivation method from Ewald and co-authors [44] and 
used the yeast sdh1Δ strain as well as a wild-type control 
strain for comparative metabolomics analyses. Data pro-
cessing with our adapted PAVE workflow led to a com-
parable amount of credentialed features between the D48 
and classical SF approach, and the subsequent annotation, 
performed using open data sources (MS-DIAL, MetFrag, 
SIRIUS CSI:FingerID [6, 12–14]), led to a comparable 
amount of annotated features. We found that the optimal 
way to perform a credentialing analysis using PAVE with 
different yeast strains is to process the different biologi-
cal groups or conditions separately, despite the associated 
increase in processing time. For future works, integrated, 
tailor-made computational tools could support the devel-
opment of a semi-automated annotation pipeline to reduce 
the overall analysis time. The high-throughput sample gen-
eration method described here enables faster sampling and 
metabolite extraction compared to a classical SF approach. 
However, this comes at the cost of increased experimen-
tal variance for the credentialed features due probably in 
large part to increased experimental errors when working in 
multiplex format, increasing the importance of subsequent 
targeted validation experiments. Nevertheless, using the D48 
approach, we detected 2119 credentialed features (5.8% out 
of 36346 features detected in total in positive and negative 
modes) across the analysed strains and of those we were 
able to annotate 198 with high confidence  (MS2 database 
match), showing the potential of the D48 method for com-
paring high number of true biological signals between dif-
ferent strains and/or conditions in one single experiment. 
The ANOVA between the different strains and conditions 

tested revealed that 52 or 15.9% of the total analysed fea-
tures (n = 327) showed statistically significant differences 
amongst the groups (D48-WT/KO and SF-WT/KO), with 
32 or 9.8% of the features showing an opposite WT versus 
KO trend in both experimental setups and 20 or 6.1% of the 
features showing changes with the same directionality (see 
ESM, Zenodo, file F16 [59] for details). Preliminary analy-
ses also suggest that our pipeline can be further developed 
to perform credentialing-based lipid analyses from the same 
yeast cultivations using the high-throughput D48 approach, 
but optimisation efforts are needed.
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