Alzheimer's disease; Aβ; NLRP3 inflammasome; antisense oligonucleotides; innate immunity; microglia; neuroinflammation; Biochemistry; Cellular and Molecular Neuroscience; A beta
Abstract :
[en] Alzheimer's disease (AD) is associated with the cerebral deposition of Amyloid-β (Aβ) peptide, which leads to NLRP3 inflammasome activation and subsequent release of interleukin-1β (IL-1β) and interleukin-18 (IL-18). NLRP3 reduction has been found to increase microglial clearance, protect from synapse loss, and suppress both the changes to synaptic plasticity and spatial memory dysfunction observed in murine AD models. Here, we test whether NLRP3-directed antisense oligonucleotides (ASOs) can be harnessed as immune modulators in primary murine microglia and human THP-1 cells. NLRP3 mRNA degradation was achieved at 72 h of ASO treatment in primary murine microglia. Consequently, NLRP3-directed ASOs significantly reduced the levels of cleaved caspase-1 and mature IL-1β when microglia were either activated by LPS and nigericin or LPS and Aβ. In human THP-1 cells NLRP3-targeted ASOs also significantly reduced the LPS plus nigericin- or LPS plus Aβ-induced release of mature IL-1β. Together, NLRP3-directed ASOs can suppress NLRP3 inflammasome activity and subsequent release of IL-1β in primary murine microglia and THP-1 cells. ASOs may represent a new and alternative approach to modulate NLRP3 inflammasome activation in neurodegenerative diseases, in addition to attempts to inhibit the complex pharmacologically.
Disciplines :
Life sciences: Multidisciplinary, general & others Biochemistry, biophysics & molecular biology Neurology
Author, co-author :
Braatz, Charlotte ; Institute for Innate Immunity, University of Bonn, Bonn, Germany
Komes, Max P; Institute for Innate Immunity, University of Bonn, Bonn, Germany
Ravichandran, Kishore Aravind ; Institute for Innate Immunity, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
de Fragas, Matheus Garcia ; Institute for Innate Immunity, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
Griep, Angelika ; Institute for Innate Immunity, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Schwartz, Stephanie; Institute for Innate Immunity, University of Bonn, Bonn, Germany
McManus, Róisín M ; Institute for Innate Immunity, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
HENEKA, Michael ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) ; Institute for Innate Immunity, University of Bonn, Bonn, Germany ; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
External co-authors :
yes
Language :
English
Title :
NLRP3-directed antisense oligonucleotides reduce microglial immunoactivities in vitro.
Alzheimer Forschung Initiative Deutsche Forschungsgemeinschaft Deutscher Akademischer Austauschdienst
Funding text :
We thank I. Rácz for help with laboratory administration and S. Opitz and F. Santarelli for technical assistance. This work was funded by Deutscher Akademischer Austauschdienst, (Grant / Award Number: 'scholarship') Alzheimer Forschung Initiative, (Grant / Award Number: '20043') Deutsche Forschungsgemeinschaft, (Grant / Award Number: 'EXC2151 – 390873048 ') BONFOR research commission of the medical faculty of the University of Bonn, (Grant / Award Number: '2021‐4‐06'). Open Access funding enabled and organized by Projekt DEAL.
Balon, K., & Wiatrak, B. (2021). PC12 and THP-1 cell lines as neuronal and microglia model in neurobiological research. Applied Sciences, 11(9), 3729. https://doi.org/10.3390/app11093729
Bamberger, M. E., Harris, M. E., McDonald, D. R., Husemann, J., & Landreth, G. E. (2003). A cell surface receptor complex for Fibrillar β-amyloid mediates microglial activation. The Journal of Neuroscience, 23(7), 2665–2674. https://doi.org/10.1523/JNEUROSCI.23-07-02665.2003
Bennett, C. F., Kordasiewicz, H. B., & Cleveland, D. W. (2021). Antisense drugs make sense for neurological diseases. Annual Review of Pharmacology and Toxicology, 61(1), 831–852. https://doi.org/10.1146/annurev-pharmtox-010919-023738
Bennett, C. F., & Swayze, E. E. (2010). RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annual Review of Pharmacology and Toxicology, 50(1), 259–293. https://doi.org/10.1146/annurev.pharmtox.010909.105654
Boucher, D., Monteleone, M., Coll, R. C., Chen, K. W., Ross, C. M., Teo, J. L., Gomez, G. A., Holley, C. L., Bierschenk, D., Stacey, K. J., Yap, A. S., Bezbradica, J. S., & Schroder, K. (2018). Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. Journal of Experimental Medicine, 215(3), 827–840. https://doi.org/10.1084/jem.20172222
Crooke, S. T., Wang, S., Vickers, T. A., Shen, W., & Liang, X. (2017). Cellular uptake and trafficking of antisense oligonucleotides. Nature Biotechnology, 35(3), 230–237. https://doi.org/10.1038/nbt.3779
Daria, A., Colombo, A., Llovera, G., Hampel, H., Willem, M., Liesz, A., Haass, C., & Tahirovic, S. (2017). Young microglia restore amyloid plaque clearance of aged microglia. The EMBO Journal, 36(5), 583–603. https://doi.org/10.15252/embj.201694591
DeVos, S. L., Miller, R. L., Schoch, K. M., Holmes, B. B., Kebodeaux, C. S., Wegener, A. J., Chen, G., Shen, T., Tran, H., Nichols, B., Zanardi, T. A., Kordasiewicz, H. B., Swayze, E. E., Bennett, C. F., Diamond, M. I., & Miller, T. M. (2017). Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Science Translational Medicine, 9(374), eaag0481. https://doi.org/10.1126/scitranslmed.aag0481
Dinarello, C. A., Simon, A., & van der Meer, J. W. M. (2012). Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nature Reviews Drug Discovery, 11(8), 633–652. https://doi.org/10.1038/nrd3800
Duewell, P., Kono, H., Rayner, K. J., Sirois, C. M., Vladimer, G., Bauernfeind, F. G., Abela, G. S., Franchi, L., Nuñez, G., Schnurr, M., Espevik, T., Lien, E., Fitzgerald, K. A., Rock, K. L., Moore, K. J., Wright, S. D., Hornung, V., & Latz, E. (2010). NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 464(7293), 1357–1361. https://doi.org/10.1038/nature08938
El Khoury, J. B., Moore, K. J., Means, T. K., Leung, J., Terada, K., Toft, M., Freeman, M. W., & Luster, A. D. (2003). CD36 mediates the innate host response to β-amyloid. Journal of Experimental Medicine, 197(12), 1657–1666. https://doi.org/10.1084/jem.20021546
Gagnon, K. T., & Corey, D. R. (2019). Guidelines for experiments using antisense oligonucleotides and double-stranded RNAs. Nucleic Acid Therapeutics, 29(3), 116–122. https://doi.org/10.1089/nat.2018.0772
Gauthier, S., Rosa-Neto, P., Morais, J. A., & Webster, C. (2021). World Alzheimer report 2021: Journey through the diagnosis of dementia. Alzheimer's Disease International. https://www.alzint.org/u/World-Alzheimer-Report-2021.pdf
Giordano, G., Hong, S., Faustman, E. M., & Costa, L. G. (2011). Measurements of cell death in neuronal and glial cells. In L. G. Costa, G. Giordano, & M. Guizzetti (Eds.), (Hrsg.) Vitro Neurotoxicology (Vol. Bd. 758, pp. 171–178). Humana Press. https://doi.org/10.1007/978-1-61779-170-3_11
Haché, M., Swoboda, K. J., Sethna, N., Farrow-Gillespie, A., Khandji, A., Xia, S., & Bishop, K. M. (2016). Intrathecal injections in children with spinal muscular atrophy: Nusinersen clinical trial experience. Journal of Child Neurology, 31(7), 899–906. https://doi.org/10.1177/0883073815627882
Halle, A., Hornung, V., Petzold, G. C., Stewart, C. R., Monks, B. G., Reinheckel, T., Fitzgerald, K. A., Latz, E., Moore, K. J., & Golenbock, D. T. (2008). The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nature Immunology, 9(8), Art. 8–Art. 865. https://doi.org/10.1038/ni.1636
Heneka, M. T., Carson, M. J., Khoury, J. E., Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Kummer, M. P. (2015). Neuroinflammation in Alzheimer's disease. The Lancet Neurology, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
Heneka, M. T., Golenbock, D. T., & Latz, E. (2015). Innate immunity in Alzheimer's disease. Nature Immunology, 16(3), 229–236. https://doi.org/10.1038/ni.3102
Heneka, M. T., Kummer, M. P., & Latz, E. (2014). Innate immune activation in neurodegenerative disease. Nature Reviews Immunology, 14(7), 7. https://doi.org/10.1038/nri3705
Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, T.-C., Gelpi, E., Halle, A., Korte, M., Latz, E., & Golenbock, D. T. (2013). NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature, 493(7434), 678. https://doi.org/10.1038/nature11729
Heneka, M. T., McManus, R. M., & Latz, E. (2018). Inflammasome signalling in brain function and neurodegenerative disease. Nature Reviews Neuroscience, 19(10), 610–621. https://doi.org/10.1038/s41583-018-0055-7
Hochheiser, I. V., Pilsl, M., Hagelueken, G., Moecking, J., Marleaux, M., Brinkschulte, R., Latz, E., Engel, C., & Geyer, M. (2022). Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature, 604(7904), 184–189. https://doi.org/10.1038/s41586-022-04467-w
Hu, C., Ding, H., Li, Y., Pearson, J. A., Zhang, X., Flavell, R. A., Wong, F. S., & Wen, L. (2015). NLRP3 deficiency protects from type 1 diabetes through the regulation of chemotaxis into the pancreatic islets. Proceedings of the National Academy of Sciences, 112(36), 11318–11323. https://doi.org/10.1073/pnas.1513509112
Ising, C., Venegas, C., Zhang, S., Scheiblich, H., Schmidt, S. V., Vieira-Saecker, A., Schwartz, S., Albasset, S., McManus, R. M., Tejera, D., Griep, A., Santarelli, F., Brosseron, F., Opitz, S., Stunden, J., Merten, M., Kayed, R., Golenbock, D. T., Blum, D., … Heneka, M. T. (2019). NLRP3 inflammasome activation drives tau pathology. Nature, 575(7784), 669–673. https://doi.org/10.1038/s41586-019-1769-z
Ito, M., Shichita, T., Okada, M., Komine, R., Noguchi, Y., Yoshimura, A., & Morita, R. (2015). Bruton's tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nature Communications, 6(1), 7360. https://doi.org/10.1038/ncomms8360
Jankowsky, J. L., Slunt, H. H., Ratovitski, T., Jenkins, N. A., Copeland, N. G., & Borchelt, D. R. (2001). Co-expression of multiple transgenes in mouse CNS: A comparison of strategies. Biomolecular Engineering, 17(6), 157–165. https://doi.org/10.1016/S1389-0344(01)00067-3
Kummer, M. P., Hermes, M., Delekarte, A., Hammerschmidt, T., Kumar, S., Terwel, D., Walter, J., Pape, H.-C., König, S., Roeber, S., Jessen, F., Klockgether, T., Korte, M., & Heneka, M. T. (2011). Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron, 71(5), 833–844. https://doi.org/10.1016/j.neuron.2011.07.001
Latz, E., Xiao, T. S., & Stutz, A. (2013). Activation and regulation of the inflammasomes. Nature Reviews Immunology, 13(6), 397–411. https://doi.org/10.1038/nri3452
Lee, C. Y. D., & Landreth, G. E. (2010). The role of microglia in amyloid clearance from the AD brain. Journal of Neural Transmission, 117(8), 949–960. https://doi.org/10.1007/s00702-010-0433-4
Liu, Y., Walter, S., Stagi, M., Cherny, D., Letiembre, M., Schulz-Schaeffer, W., Heine, H., Penke, B., Neumann, H., & Fassbender, K. (2005). LPS receptor (CD14): A receptor for phagocytosis of Alzheimer's amyloid peptide. Brain, 128(8), 1778–1789. https://doi.org/10.1093/brain/awh531
Lučiūnaitė, A., McManus, R. M., Jankunec, M., Rácz, I., Dansokho, C., Dalgėdienė, I., Schwartz, S., Brosseron, F., & Heneka, M. T. (2020). Soluble Aβ oligomers and protofibrils induce NLRP3 inflammasome activation in microglia. Journal of Neurochemistry, 155(6), 650–661. https://doi.org/10.1111/jnc.14945
Mangan, M. S. J., Olhava, E. J., Roush, W. R., Seidel, H. M., Glick, G. D., & Latz, E. (2018). Targeting the NLRP3 inflammasome in inflammatory diseases. Nature Reviews Drug Discovery, 17(8), 588–606. https://doi.org/10.1038/nrd.2018.97
Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25(12), 677–686. https://doi.org/10.1016/j.it.2004.09.015
Martinon, F., Burns, K., & Tschopp, J. (2002). The inflammasome. Molecular Cell, 10(2), 417–426. https://doi.org/10.1016/S1097-2765(02)00599-3
Mawuenyega, K. G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J. C., Yarasheski, K. E., & Bateman, R. J. (2010). Decreased clearance of CNS β-amyloid in Alzheimer's disease. Science, 330(6012), 1774. https://doi.org/10.1126/science.1197623
Mridha, A. R., Wree, A., Robertson, A. A. B., Yeh, M. M., Johnson, C. D., Van Rooyen, D. M., Haczeyni, F., Teoh, N. C.-H., Savard, C., Ioannou, G. N., Masters, S. L., Schroder, K., Cooper, M. A., Feldstein, A. E., & Farrell, G. C. (2017). NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. Journal of Hepatology, 66(5), 1037–1046. https://doi.org/10.1016/j.jhep.2017.01.022
Paolicelli, R. C., Sierra, A., Stevens, B., Tremblay, M. E., Aguzzi, A., Ajami, B., Amit, I., Audinat, E., Bechmann, I., Bennett, M., Bennett, F., Bessis, A., Biber, K., Bilbo, S., Blurton-Jones, M., Boddeke, E., Brites, D., Brône, B., Brown, G. C., … Wyss-Coray, T. (2022). Microglia states and nomenclature: A field at its crossroads. Neuron, 110, 3458–3483.
Paresce, D. M., Ghosh, R. N., & Maxfield, F. R. (1996). Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via a scavenger receptor. Neuron, 17(3), 553–565. https://doi.org/10.1016/S0896-6273(00)80187-7
Patil, S. D., Rhodes, D. G., & Burgess, D. J. (2005). DNA-based therapeutics and DNA delivery systems: A comprehensive review. The AAPS Journal, 7(1), E61–E77. https://doi.org/10.1208/aapsj070109
Pétrilli, V., Papin, S., Dostert, C., Mayor, A., Martinon, F., & Tschopp, J. (2007). Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death & Differentiation, 14(9), 1583–1589. https://doi.org/10.1038/sj.cdd.4402195
Raes, L., Pille, M., Harizaj, A., Goetgeluk, G., Van Hoeck, J., Stremersch, S., Fraire, J. C., Brans, T., de Jong, O. G., Maas-Bakker, R., Mastrobattista, E., Vader, P., De Smedt, S. C., Vandekerckhove, B., Raemdonck, K., & Braeckmans, K. (2021). Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering. Molecular Therapy—Nucleic Acids, 25, 696–707. https://doi.org/10.1016/j.omtn.2021.08.014
Rathinam, V. A. K., Zhao, Y., & Shao, F. (2019). Innate immunity to intracellular LPS. Nature Immunology, 20(5), 527–533. https://doi.org/10.1038/s41590-019-0368-3
Reitz, C., & Mayeux, R. (2014). Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochemical Pharmacology, 88(4), 640–651. https://doi.org/10.1016/j.bcp.2013.12.024
Rinaldi, C., & Wood, M. J. A. (2018). Antisense oligonucleotides: The next frontier for treatment of neurological disorders. Nature Reviews Neurology, 14(1), 1. https://doi.org/10.1038/nrneurol.2017.148
Sandanger, Ø., Ranheim, T., Vinge, L. E., Bliksøen, M., Alfsnes, K., Finsen, A. V., Dahl, C. P., Askevold, E. T., Florholmen, G., Christensen, G., Fitzgerald, K. A., Lien, E., Valen, G., Espevik, T., Aukrust, P., & Yndestad, A. (2013). The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia–reperfusion injury. Cardiovascular Research, 99(1), 164–174. https://doi.org/10.1093/cvr/cvt091
Scharner, J., & Aznarez, I. (2021). Clinical applications of single-stranded oligonucleotides: Current landscape of approved and In-development therapeutics. Molecular Therapy, 29(2), 540–554. https://doi.org/10.1016/j.ymthe.2020.12.022
Schnaars, M., Beckert, H., & Halle, A. (2013). Assessing β-amyloid-induced NLRP3 Inflammasome activation in primary microglia. In De Nardo C. M. & E. Latz (Hrsg.), The Inflammasome (Bd. 1040, 1–8). Humana Press. https://doi.org/10.1007/978-1-62703-523-1_1
Schoch, K. M., DeVos, S. L., Miller, R. L., Chun, S. J., Norrbom, M., Wozniak, D. F., Dawson, H. N., Bennett, C. F., Rigo, F., & Miller, T. M. (2016). Increased 4R-tau induces pathological changes in a human-tau mouse model. Neuron, 90(5), 941–947. https://doi.org/10.1016/j.neuron.2016.04.042
Shen, X., & Corey, D. R. (2018). Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Research, 46(4), 1584–1600. https://doi.org/10.1093/nar/gkx1239
Stewart, C. R., Stuart, L. M., Wilkinson, K., van Gils, J. M., Deng, J., Halle, A., Rayner, K. J., Boyer, L., Zhong, R., Frazier, W. A., Lacy-Hulbert, A., Khoury, J. E., Golenbock, D. T., & Moore, K. J. (2010). CD36 ligands promote sterile inflammation through assembly of a toll-like receptor 4 and 6 heterodimer. Nature Immunology, 11(2), 155–161. https://doi.org/10.1038/ni.1836
Sud, R., Geller, E. T., & Schellenberg, G. D. (2014). Antisense-mediated exon skipping decreases tau protein expression: A potential therapy for Tauopathies. Molecular Therapy—Nucleic Acids, 3, e180. https://doi.org/10.1038/mtna.2014.30
van der Heijden, T., Kritikou, E., Venema, W., van Duijn, J., van Santbrink, P. J., Slütter, B., Foks, A. C., Bot, I., & Kuiper, J. (2017). NLRP3 Inflammasome Inhibition by MCC950 Reduces Atherosclerotic Lesion Development in Apolipoprotein E–Deficient Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(8), 1457–1461. https://doi.org/10.1161/ATVBAHA.117.309575
van Hout, G. P. J., Bosch, L., Ellenbroek, G. H. J. M., de Haan, J. J., van Solinge, W. W., Cooper, M. A., Arslan, F., de Jager, S. C. A., Robertson, A. A. B., Pasterkamp, G., & Hoefer, I. E. (2017). The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. European Heart Journal, 38(11), 828–836. https://doi.org/10.1093/eurheartj/ehw247
Venegas, C., Kumar, S., Franklin, B. S., Dierkes, T., Brinkschulte, R., Tejera, D., Vieira-Saecker, A., Schwartz, S., Santarelli, F., Kummer, M. P., Griep, A., Gelpi, E., Beilharz, M., Riedel, D., Golenbock, D. T., Geyer, M., Walter, J., Latz, E., & Heneka, M. T. (2017). Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease. Nature, 552(7685), 355–361. https://doi.org/10.1038/nature25158
Weiner, H. L., & Frenkel, D. (2006). Immunology and immunotherapy of Alzheimer's disease. Nature Reviews Immunology, 6(5), 5. https://doi.org/10.1038/nri1843
WHO. (2020). The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
Wree, A., McGeough, M. D., Peña, C. A., Schlattjan, M., Li, H., Inzaugarat, M. E., Messer, K., Canbay, A., Hoffman, H. M., & Feldstein, A. E. (2014). NLRP3 inflammasome activation is required for fibrosis development in NAFLD. Journal of Molecular Medicine, 92(10), 1069–1082. https://doi.org/10.1007/s00109-014-1170-1
Yamanaka, M., Ishikawa, T., Griep, A., Axt, D., Kummer, M. P., & Heneka, M. T. (2012). PPAR/RXR -induced and CD36-mediated microglial amyloid- phagocytosis results in cognitive improvement in amyloid precursor protein/Presenilin 1 mice. Journal of Neuroscience, 32(48), 17321–17331. https://doi.org/10.1523/JNEUROSCI.1569-12.2012