[en] The significance of lightweight designs has become increasingly paramount due to the growing demand for sustainability. Consequently, this study aims to demonstrate the potential of utilising a functionally graded lattice as an infill structure in designing an additively manufactured bicycle crank arm to achieve construction lightness. The authors seek to determine whether functionally graded lattice structures can be effectively implemented and explore their potential real-world applications. Two aspects determine their realisations: the lack of adequate design and analysis methods and the limitations of existing additive manufacturing technology. To this end, the authors employed a relatively simple crank arm and design exploration methods for structural analysis. This approach facilitated the efficient identification of the optimal solution. A prototype was subsequently developed using fused filament fabrication for metals, enabling the production of a crank arm with the optimised infill. As a result, the authors developed a lightweight and manufacturable crank arm showing a new design and analysis method implementable in similar additively manufactured elements. The percentage increase of a stiffness-to-mass ratio of 109.6% was achieved compared to the initial design. The findings suggest that the functionally graded infill based on the lattice shell improves structural lightness and can be manufactured.
Précision sur le type de document :
Compte rendu
Disciplines :
Ingénierie mécanique
Auteur, co-auteur :
KEDZIORA, Slawomir ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
DECKER, Thierry ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
MUSEYIBOV, Elvin ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Engineering > Team Slawomir KEDZIORA
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Application of Functionally Graded Shell Lattice as Infill in Additive Manufacturing
Titre original :
[en] Application of Functionally Graded Shell Lattice as Infill in Additive Manufacturing
Munsch M. Schmidt-Lehr M. Wycisk E. Binder Jetting and FDM: A Comparison with Laser Powder Bed Fusion and Metal Injection Moulding Available online: https://www.metal-am.com/articles/binder-jetting-fdm-comparison-with-powder-bed-fusion-3d-printing-injection-moulding/ (accessed on 15 October 2022)
Podroužek J. Marcon M. Ninčević K. Wan-Wendner R. Bio-inspired 3D infill patterns for additive manufacturing and structural applications Materials 2019 12 499 10.3390/ma12030499
Abate K.M. Nazir A. Yeh Y.P. Chen J.E. Jeng J.Y. Design, optimization, and validation of mechanical properties of different cellular structures for biomedical application Int. J. Adv. Manuf. Technol. 2020 106 1253 1265 10.1007/s00170-019-04671-5
Afshar M. Anaraki A.P. Montazerian H. Kadkhodapour J. Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures J. Mech. Behav. Biomed. Mater. 2016 62 481 494 10.1016/j.jmbbm.2016.05.027
Jia H. Lei H. Wang P. Meng J. Li C. Zhou H. Zhang X. Fang D. An experimental and numerical investigation of compressive response of designed Schwarz primitive triply periodic minimal surface with non-uniform shell thickness Extrem. Mech. Lett. 2020 37 100671 10.1016/j.eml.2020.100671
Lee D.W. Khan K.A. Abu Al-Rub R.K. Stiffness and yield strength of architectured foams based on the Schwarz primitive triply periodic minimal surface Int. J. Plast. 2017 95 1 20 10.1016/j.ijplas.2017.03.005
Li Y. Feng Z. Hao L. Huang L. Xin C. Wang Y. Bilotti E. Essa K. Zhang H. Li Z. et al. A review on functionally graded materials and structures via additive manufacturing: From multi-scale design to versatile functional properties Adv. Mater. Technol. 2020 5 1900981 10.1002/admt.201900981
Maskery I. Hussey A. Panesar A. Aremu A. Tuck C. Ashcroft I. Hague R. An investigation into reinforced and functionally graded lattice structures J. Cell. Plast. 2017 53 151 165 10.1177/0021955X16639035
Yang L. Yan C. Cao W. Liu Z. Song B. Wen S. Zhang C. Shi Y. Yang S. Compression–compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting Acta Mater. 2019 181 49 66 10.1016/j.actamat.2019.09.042
Aslan B. Yıldız A.R. Optimum design of automobile components using lattice structures for additive manufacturing Mater. Test. 2020 62 633 639 10.3139/120.111527
Czerwinski F. Current trends in automotive lightweighting strategies and materials Materials 2021 14 6631 10.3390/ma14216631
Oftadeh R. Perez-Viloria M. Villa-Camacho J.C. Vaziri A. Nazarian A. Biomechanics and mechanobiology of trabecular bone: A review J. Biomech. Eng. 2015 137 010802 10.1115/1.4029176 25412137
Sato M. Inoue A. Shima H. Bamboo-inspired optimal design for functionally graded hollow cylinders PLoS ONE 2017 12 e0175029 10.1371/journal.pone.0175029
Spencer O.O. Yusuf O.T. Tofade T.C. Additive manufacturing technology development: A trajectory towards industrial revolution Am. J. Mech. Ind. Eng. 2018 3 80 90 10.11648/j.ajmie.20180305.12
Kedziora S. Decker T. Museyibov E. Morbach J. Hohmann S. Huwer A. Wahl M. Strength properties of 316L and 17–4 PH stainless steel produced with additive manufacturing Materials 2022 15 6278 10.3390/ma15186278
Koizumi M. FGM activities in Japan Compos. Part B Eng. 1997 28 1 4 10.1016/S1359-8368(96)00016-9
Saleh B. Jiang J. Fathi R. Al-hababi T. Xu Q. Wang L. Song D. Ma A. 30 years of functionally graded materials: An overview of manufacturing methods, applications and future challenges Compos. Part B Eng. 2020 201 108376 10.1016/j.compositesb.2020.108376
Mahmoud D. Elbestawi M. Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: A review J. Manuf. Mater. Process. 2017 1 13 10.3390/jmmp1020013
Kou X.Y. Parks G.T. Tan S.T. Optimal design of functionally graded materials using a procedural model and particle swarm optimization CAD Comput. Aided Des. 2012 44 300 310 10.1016/j.cad.2011.10.007
Miyamato Y. Kaysser W.A. Rabin B.H. Kawasaki A. Ford R.G. Functionally Graded Materials: Design, Processing and Application Springer Science and Business Media New York, NY, USA 2013 Volume 1 1 339 10.1007/978-1-4615-5301-4
Wu J. Aage N. Westermann R. Sigmund O. Infill optimization for additive manufacturing-approaching bone-like porous structures IEEE Trans. Vis. Comput. Graph. 2018 24 1127 1140 10.1109/TVCG.2017.2655523 28129160
Gries M. Methods for evaluating and covering the design space during early design development Integr. VLSI J. 2004 38 131 183 10.1016/S0167-9260(04)00032-X
Kang E. Jackson E. Schulte W. An approach for effective design space exploration Foundations of Computer Software. Modeling, Development, and Verification of Adaptive Systems Springer Berlin/Heidelberg, Germany 2011 10.1007/978-3-642-21292-5_3
Pan C. Han Y. Lu J. Design and optimization of lattice structures: A review Appl. Sci. 2020 10 6374 10.3390/app10186374
Al-Saedi D.S.J. Masood S.H. Faizan-Ur-Rab M. Alomarah A. Ponnusamy P. Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM Mater. Des. 2018 144 32 44 10.1016/j.matdes.2018.01.059
Zheng X. Lee H. Weisgraber T.H. Shusteff M. DeOtte J. Duoss E.B. Kuntz J.D. Biener M.M. Ge Q. Jackson J.A. et al. Ultralight, ultrastiff mechanical metamaterials Science 2014 344 1373 1377 10.1126/science.1252291
Ashby M.F. The properties of foams and lattices Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006 364 15 30 10.1098/rsta.2005.1678
Deshpande V.S. Fleck N.A. Ashby M.F. Effective properties of the octet-truss lattice material J. Mech. Phys. Solids 2001 49 1747 1769 10.1016/S0022-5096(01)00010-2
Decker T. Kedziora S. Wolf C. Practical Implementation of Functionally Graded Lattice Structures in a Bicycle Crank Arm 2020 Available online: http://hdl.handle.net/10993/46747 (accessed on 28 May 2022)
Schoen A.H. Infinite Periodic Minimal Surfaces without Self-Intersections Report NASA Washington, DC, USA 1970
Abueidda D.W. Elhebeary M. Shiang C.S. Pang S. Abu Al-Rub R.K. Jasiuk I.M. Mechanical properties of 3D printed polymeric gyroid cellular structures: Experimental and finite element study Mater. Des. 2019 165 107597 10.1016/j.matdes.2019.107597
Bean P. Lopez-Anido R.A. Vel S. Numerical modeling and experimental investigation of effective elastic properties of the 3D printed gyroid infill Appl. Sci. 2022 12 2180 10.3390/app12042180
Silva C. Pais A.I. Caldas G. Gouveia B.P.P.A. Alves J.L. Belinha J. Study on 3D printing of gyroid-based structures for superior structural behaviour Prog. Addit. Manuf. 2021 6 689 703 10.1007/s40964-021-00191-5
Al-Ketan O. Abu Al-Rub R.K. MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces Mater. Des. Process. Commun. 2020 3 e205 10.1002/mdp2.205
Zhang X.Y. Yan X.C. Fang G. Liu M. Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface Addit. Manuf. 2020 32 101015 10.1016/j.addma.2019.101015
Han C. Li Y. Wang Q. Wen S. Wei Q. Yan C. Hao L. Liu J. Shi Y. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants J. Mech. Behav. Biomed. Mater. 2018 80 119 127 10.1016/j.jmbbm.2018.01.013
Quaresimin M. Meneghetti G. Verardo F. Design and optimisation of an RTM composite bicycle crank J. Reinf. Plast. Compos. 2001 20 129 146 10.1177/073168401772678319
McEwen I. Cooper D.E. Warnett J. Kourra N. Williams M.A. Gibbons G.J. Design and manufacture of a high-performance bicycle crank by additive manufacturing Appl. Sci. 2018 8 1360 10.3390/app8081360
Gutiérrez-Moizant R. Ramírez-Berasategui M. Calvo J.A. Álvarez Caldas C. Validation and improvement of a bicycle crank arm based in numerical simulation and uncertainty quantification Sensors 2020 20 1814 10.3390/s20071814
Chang R.R. Dai W.J. Wu F.Y. Jia S.Y. Tan H.M. Design and manufacturing of a laminated composite bicycle crank Procedia Eng. 2013 67 497 505 10.1016/j.proeng.2013.12.050
nTopology nTopology, Version 3.45.4 Available online: https://ntopology.com/ntop-platform (accessed on 4 April 2023)
ISO 4210-8:2023 Cycles—Safety Requirements for Bicycles—Part 8: Pedal and Drive System Test Methods ISO Geneva, Switzerland 2023
Whitt F.R. Wilson D.G. Bicycling Science 2nd ed. MIT Press Cambridge, MA, USA 1982 364
Markforged T. Metal-X System Available online: https://markforged.com/metal-x/ (accessed on 15 March 2022)
Basf T. Ultrafuse FFF Available online: https://www.ultrafusefff.com/product-category/metal/ultrafuse-316l/ (accessed on 14 February 2021)
Foundry T.V. Manufacturing Metal 3D Printing Filaments and Materials Available online: https://www.thevirtualfoundry.com/ (accessed on 12 September 2022)
Desktop Metal Inc. Studio System™ 2 Available online: https://www.desktopmetal.com/products/studio (accessed on 12 May 2022)
Altair Engineering Inc. HyperStudy Guide, 2022.1 Available online: https://altairhyperworks.com/product/HyperStudy (accessed on 3 February 2023)
Altair Engineering Inc. OptiStruct, Version 2022.1 Available online: https://www.altair.com/optistruct/ (accessed on 8 February 2023)
Jaimes A.L. Martínez S.Z. Coello C.A.C. An introduction to multiobjective optimization techniques Optimization in Polymer Processing Chemical Engineering Methods and Technology Nova Science Publishers Hauppauge, NY, USA 2011 29 57
Engineering A. Altair HyperStudy Guide, Version 2022.1, DOE Modified Extensible Lattice Sequence Available online: https://2022.help.altair.com/2022.1/hwdesktop/hst/topics/design_exploration/method_modified_extensible_lattice_sequence_doe_r.htm (accessed on 3 April 2023)
Ollar J. A Multidisciplinary Design Optimisation Framework for Structural Problems with Disparate Variable Dependence Ph.D. Thesis Queen Mary University of London London, UK 2016
Markforged T. 17–4 PH Stainless Steel Available online: https://static.markforged.com/downloads/17-4-ph-stainless-steel.pdf (accessed on 9 November 2022)
Bjørheim F. Lopez I.L.T. Tension testing of additively manufactured specimens of 17–4 PH processed by bound metal deposition IOP Conf. Ser. Mater. Sci. Eng. 2021 1201 012037 10.1088/1757-899X/1201/1/012037
Morgan J.E. Wagg D.J. The failure of bike cranks, International Standards, tests and interpretations Sport. Eng. 2002 5 113 119 10.1046/j.1460-2687.2002.00099.x
Engineering M. Component Failure Museum, Bicycle Crank Failure II Available online: http://technology.open.ac.uk/materials/mem/mem_ccf4.htm (accessed on 15 July 2022)
Markforged T. Eiger.io, Slicer 3.97.0 Available online: https://www.eiger.io/ (accessed on 9 January 2023)
Günaydın A.C. Yıldız A.R. Kaya N. Multi-objective optimization of build orientation considering support structure volume and build time in laser powder bed fusion Mater. Test. 2022 64 323 338 10.1515/mt-2021-2075