Article (Périodiques scientifiques)
CFMT: a collaborative filtering approach based on the nonnegative matrix factorization technique and trust relationships
KHALEDIAN, Navid; Mardukhi, Farhad
2022In Journal of Ambient Intelligence and Humanized Computing, 13 (5), p. 2667 - 2683
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
CFMT.pdf
Postprint Éditeur (2.43 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Collaborative filtering; Gradient descent; Nonnegative matrix factorization; Recommender system; Trust relationship; Cold-start; Factorization techniques; Gradient-descent; Information overloads; Its efficiencies; matrix; Overload problems; Trust networks; Computer Science (all); General Computer Science
Résumé :
[en] As a method of information filtering, the Recommender System (RS) has gained considerable popularity because of its efficiency and provision of the most superior numbers of useful items. A recommender system is a proposed solution to the information overload problem in social media and algorithms. Collaborative Filtering (CF) is a practical approach to the recommendation; however, it is characterized by cold start and data sparsity, the most severe barriers against providing accurate recommendations. Rating matrices are finely represented by Nonnegative Matrix Factorization (NMF) models, fundamental models in CF-based RSs. However, most NMF methods do not provide reasonable accuracy due to the dispersion of the rating matrix. As a result of the sparsity of data and problems concerning the cold start, information on the trust network among users is further utilized to elevate RS performance. Therefore, this study suggests a novel trust-based matrix factorization technique referred to as CFMT, which uses the social network data in the recommendation process by modeling user’s roles as trustees and trusters, given the trust network’s structural information. The proposed method seeks to lower the sparsity of the data and the cold start problem by integrating information sources including ratings and trust statements into the recommendation model, an attempt by which significant superiority over state-of-the-art approaches is demonstrated an empirical examination of real-world datasets.
Précision sur le type de document :
Compte rendu
Disciplines :
Sciences informatiques
Auteur, co-auteur :
KHALEDIAN, Navid   ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CritiX ; Department of Computer Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
Mardukhi, Farhad ;  Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran
 Ces auteurs ont contribué de façon équivalente à la publication.
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
CFMT: a collaborative filtering approach based on the nonnegative matrix factorization technique and trust relationships
Date de publication/diffusion :
mai 2022
Titre du périodique :
Journal of Ambient Intelligence and Humanized Computing
ISSN :
1868-5137
eISSN :
1868-5145
Maison d'édition :
Springer Science and Business Media Deutschland GmbH
Volume/Tome :
13
Fascicule/Saison :
5
Pagination :
2667 - 2683
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 21 novembre 2023

Statistiques


Nombre de vues
47 (dont 3 Unilu)
Nombre de téléchargements
190 (dont 0 Unilu)

citations Scopus®
 
33
citations Scopus®
sans auto-citations
31
OpenCitations
 
1
citations OpenAlex
 
31
citations WoS
 
20

Bibliographie


Publications similaires



Contacter ORBilu