[en] Focusing on examples of Majorana zero modes on the corners of a two-dimensional lattice, we introduce a method to find parameter regions where the Majorana modes are perfectly localized on a single site. Such a limit allows us to study the dimerization structure of the sparse bulk Hamiltonian that results in the higher-order topology of the system. Furthermore, such limits typically provide an analytical understanding of the system energy scales. Based on the dimerization structure we extract from the two-dimensional model, we identify a more general stacking procedure to construct Majorana zero modes in arbitrary corners of a d-dimensional hypercube, which we demonstrate explicitly in d 3.
Disciplines :
Physics
Author, co-author :
Poduval, Prathyush; Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, USA ; Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg
SCHMIDT, Thomas ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
HALLER, Andreas ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
no
Language :
English
Title :
Perfectly localized Majorana corner modes in fermionic lattices
V. T. Phong, N. R. Walet, and F. Guinea, Majorana zero modes in a two-dimensional Formula Presented-wave superconductor, Phys. Rev. B 96, 060505(R) ( 2017)2469-9950 10.1103/PhysRevB.96.060505.
T. E. Pahomi, M. Sigrist, and A. A. Soluyanov, Braiding Majorana corner modes in a second-order topological superconductor, Phys. Rev. Res. 2, 032068(R) ( 2020)2643-1564 10.1103/PhysRevResearch.2.032068.
S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. Ludwig, Topological insulators and superconductors: Tenfold way and dimensional hierarchy, New J. Phys. 12, 065010 ( 2010)1367-2630 10.1088/1367-2630/12/6/065010.
K. Laubscher, D. Chughtai, D. Loss, and J. Klinovaja, Kramers pairs of Majorana corner states in a topological insulator bilayer, Phys. Rev. B 102, 195401 ( 2020)2469-9950 10.1103/PhysRevB.102.195401.
K. Laubscher, D. Loss, and J. Klinovaja, Majorana and parafermion corner states from two coupled sheets of bilayer graphene, Phys. Rev. Res. 2, 013330 ( 2020)2643-1564 10.1103/PhysRevResearch.2.013330.
S.-B. Zhang, W. B. Rui, A. Calzona, S.-J. Choi, A. P. Schnyder, and B. Trauzettel, Topological and holonomic quantum computation based on second-order topological superconductors, Phys. Rev. Res. 2, 043025 ( 2020)2643-1564 10.1103/PhysRevResearch.2.043025.
K. Laubscher and J. Klinovaja, Majorana bound states in semiconducting nanostructures, J. Appl. Phys. 130, 081101 ( 2021)0021-8979 10.1063/5.0055997.
S.-B. Zhang, A. Calzona, and B. Trauzettel, All-electrically tunable networks of Majorana bound states, Phys. Rev. B 102, 100503(R) ( 2020)2469-9950 10.1103/PhysRevB.102.100503.
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 ( 2010)0034-6861 10.1103/RevModPhys.82.3045.
C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88, 035005 ( 2016)0034-6861 10.1103/RevModPhys.88.035005.
J. E. Moore, The birth of topological insulators, Nature (London) 464, 194 ( 2010)0028-0836 10.1038/nature08916.
W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators, Phys. Rev. B 96, 245115 ( 2017)2469-9950 10.1103/PhysRevB.96.245115.
W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science 357, 61 ( 2017)0036-8075 10.1126/science.aah6442.
S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, Topolectrical-circuit realization of topological corner modes, Nat. Phys. 14, 925 ( 2018)1745-2473 10.1038/s41567-018-0246-1.
M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer, Second-order topological insulators and superconductors with an order-two crystalline symmetry, Phys. Rev. B 97, 205135 ( 2018)2469-9950 10.1103/PhysRevB.97.205135.
F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. Parkin, B. A. Bernevig, and T. Neupert, Higher-order topological insulators, Sci. Adv. 4, eaat0346 ( 2018)2375-2548 10.1126/sciadv.aat0346.
W. A. Benalcazar, J. C. Y. Teo, and T. L. Hughes, Classification of two-dimensional topological crystalline superconductors and Majorana bound states at disclinations, Phys. Rev. B 89, 224503 ( 2014)1098-0121 10.1103/PhysRevB.89.224503.
Z. Song, Z. Fang, and C. Fang, Formula Presented-Dimensional Edge States of Rotation Symmetry Protected Topological States, Phys. Rev. Lett. 119, 246402 ( 2017)0031-9007 10.1103/PhysRevLett.119.246402.
J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and R.-J. Slager, Topological Classification of Crystalline Insulators through Band Structure Combinatorics, Phys. Rev. X 7, 041069 ( 2017)2160-3308 10.1103/PhysRevX.7.041069.
A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78, 195125 ( 2008)1098-0121 10.1103/PhysRevB.78.195125.
L. Fu, Topological Crystalline Insulators, Phys. Rev. Lett. 106, 106802 ( 2011)0031-9007 10.1103/PhysRevLett.106.106802.
X. Zhang, H.-X. Wang, Z.-K. Lin, Y. Tian, B. Xie, M.-H. Lu, Y.-F. Chen, and J.-H. Jiang, Second-order topology and multidimensional topological transitions in sonic crystals, Nat. Phys. 15, 582 ( 2019)1745-2473 10.1038/s41567-019-0472-1.
N. M. Nguyen, W. Brzezicki, and T. Hyart, Corner states, hinge states, and Majorana modes in SnTe nanowires, Phys. Rev. B 105, 075310 ( 2022)2469-9950 10.1103/PhysRevB.105.075310.
R.-X. Zhang and S. Das Sarma, Intrinsic Time-Reversal-Invariant Topological Superconductivity in Thin Films of Iron-Based Superconductors, Phys. Rev. Lett. 126, 137001 ( 2021)0031-9007 10.1103/PhysRevLett.126.137001.
X.-H. Pan, X.-J. Luo, J.-H. Gao, and X. Liu, Detecting and braiding higher-order Majorana corner states through their spin degree of freedom, Phys. Rev. B 105, 195106 ( 2022) 10.1103/PhysRevB.105.195106
M. Ezawa, Higher-Order Topological Insulators and Semimetals on the Breathing Kagome and Pyrochlore Lattices, Phys. Rev. Lett. 120, 026801 ( 2018)0031-9007 10.1103/PhysRevLett.120.026801.
K. Laubscher, D. Loss, and J. Klinovaja, Fractional topological superconductivity and parafermion corner states, Phys. Rev. Res. 1, 032017(R) ( 2019)2643-1564 10.1103/PhysRevResearch.1.032017.
K. Laubscher, P. Keizer, and J. Klinovaja, Fractional second-order topological insulator from a three-dimensional coupled-wires construction, Phys. Rev. B 107, 045409 ( 2023)2469-9950 10.1103/PhysRevB.107.045409.
A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Usp. 44, 131 ( 2001)1468-4780 10.1070/1063-7869/44/10S/S29.
J. C. Budich and E. Ardonne, Equivalent topological invariants for one-dimensional Majorana wires in symmetry class Formula Presented, Phys. Rev. B 88, 075419 ( 2013)1098-0121 10.1103/PhysRevB.88.075419.
Y. Peng, Y. Bao, and F. von Oppen, Boundary green functions of topological insulators and superconductors, Phys. Rev. B 95, 235143 ( 2017)2469-9950 10.1103/PhysRevB.95.235143.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.108.035124 for additional remarks on the common basis of the zero-energy eigenmodes and the particle-hole symmetry operator, the adiabatic connection to the model discussed in Ref. [2], the link between the nested Pfaffian invariants and the geometric configurations of corner modes, as well as ribbon and surface spectra of the 2D and 3D models discussed in the main text.
R.-X. Zhang, J. D. Sau, and S. D. Sarma, Kitaev building-block construction for higher-order topological superconductors, arXiv:2003.02559.
M. Ezawa, Minimal models for Wannier-type higher-order topological insulators and phosphorene, Phys. Rev. B 98, 045125 ( 2018)2469-9950 10.1103/PhysRevB.98.045125.
E. Khalaf, Higher-order topological insulators and superconductors protected by inversion symmetry, Phys. Rev. B 97, 205136 ( 2018)2469-9950 10.1103/PhysRevB.97.205136.
B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum chemistry, Nature (London) 547, 298 ( 2017)0028-0836 10.1038/nature23268.
S. Simon, M. Geier, and P. W. Brouwer, Higher-order topological semimetals and nodal superconductors with an order-two crystalline symmetry, Phys. Rev. B 106, 035105 ( 2022)2469-9950 10.1103/PhysRevB.106.035105.
L. Trifunovic and P. W. Brouwer, Higher-order topological band structures, Phys. Status Solidi B 258, 2000090 ( 2021)0370-1972 10.1002/pssb.202000090.
L.-H. Hu and R.-X. Zhang, Topological superconducting vortex from trivial electronic bands, Nat. Commun. 14, 640 ( 2023)2041-1723 10.1038/s41467-023-36347-w.
P. M. Lenggenhager, X. Liu, T. Neupert, and T. Bzdušek, Universal higher-order bulk-boundary correspondence of triple nodal points, Phys. Rev. B 106, 085129 ( 2022)2469-9950 10.1103/PhysRevB.106.085129.
L. Fidkowski, T. S. Jackson, and I. Klich, Model Characterization of Gapless Edge Modes of Topological Insulators Using Intermediate Brillouin-Zone Functions, Phys. Rev. Lett. 107, 036601 ( 2011)0031-9007 10.1103/PhysRevLett.107.036601.
A. Matsugatani and H. Watanabe, Connecting higher-order topological insulators to lower-dimensional topological insulators, Phys. Rev. B 98, 205129 ( 2018)2469-9950 10.1103/PhysRevB.98.205129.