microbial active matter; bacterial colony; DDFT; interactions; feedback; fluctuations
Abstract :
[en] Mechanical stresses stemming from environmental factors are a key determinant of cellular behavior and physiology. Yet, the role of self-induced biomechanical stresses in growing bacterial colonies has remained largely unexplored. Here, we demonstrate how collective mechanical forcing plays an important role in the dynamics of the cell size of growing bacteria. We observe that the measured elongation rate of well-nourished Escherichia coli cells decreases over time, depending on the free area around each individual, and associate this behavior with the response of the growing cells to mechanical stresses. Via a cell-resolved model accounting for the feedback of collective forces on individual cell growth, we quantify the effect of this mechano-response on the structure and composition of growing bacterial colonies, including the local environment of each cell. Finally, we predict that a mechano-cross-response between competing bacterial strains with distinct growth rates affects their size distributions.
Deutsche Forschungsgemeinschaft Deutsche Forschungsgemeinschaft Fonds National de la Recherche Luxembourg Fonds National de la Recherche Luxembourg Institute for Advanced Studies, University of Luxembourg
Funding text :
R.W. and H.L. acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) through the SPP 2265, under grant numbers WI 5527/1-1 (R.W.) and LO 418/25-1 (H.L.). A.S. thanks the Institute for Advanced Studies, University of Luxembourg (AUDACITY Grant: IAS-20/CAMEOS) and the Luxembourg National Research Fund’s ATTRACT Investigator Grant (Grant no. A17/MS/11572821/MBRACE) and CORE Grant (C19/MS/13719464/TOPOFLUME/Sengupta) for supporting this work.
Dufrêne, Y. F. & Persat, A. Mechanomicrobiology: how bacteria sense and respond to forces. Nat. Rev. Microbiol. 18, 227–240 (2020). DOI: 10.1038/s41579-019-0314-2
Harper, C. E. & Hernandez, C. J. Cell biomechanics and mechanobiology in bacteria: Challenges and opportunities. APL Bioeng. 4, 021501 (2020).
Persat, A. et al. The mechanical world of bacteria. Cell 161, 988–997 (2015). DOI: 10.1016/j.cell.2015.05.005
Genova, L. A. et al. Mechanical stress compromises multicomponent efflux complexes in bacteria. Proc. Natl Acad. Sci. USA 116, 25462–25467 (2019). DOI: 10.1073/pnas.1909562116
Allen, R. J. & Waclaw, B. Bacterial growth: a statistical physicist’s guide. Rep. Prog. Phys. 82, 016601 (2018). DOI: 10.1088/1361-6633/aae546
You, Z., Pearce, D. J. G., Sengupta, A. & Giomi, L. Geometry and mechanics of microdomains in growing bacterial colonies. Phys. Rev. X 8, 031065 (2018).
You, Z., Pearce, D. J. G., Sengupta, A. & Giomi, L. Mono- to multilayer transition in growing bacterial colonies. Phys. Rev. Lett. 123, 178001 (2019). DOI: 10.1103/PhysRevLett.123.178001
Chu, E. K., Kilic, O., Cho, H., Groisman, A. & Levchenko, A. Self-induced mechanical stress can trigger biofilm formation in uropathogenic Escherichia coli. Nat. Commun. 9, 4087 (2018). DOI: 10.1038/s41467-018-06552-z
Alric, B., Formosa-Dague, C., Dague, E., Holt, L. J. & Delarue, M. Macromolecular crowding limits growth under pressure. Nat. Phys. 18, 411–416 (2022). DOI: 10.1038/s41567-022-01506-1
Sengupta, A. Microbial active matter: a topological framework. Front. Phys. 8, 184 (2020). DOI: 10.3389/fphy.2020.00184
Dhar, J., Thai, A. L. P., Ghoshal, A., Giomi, L. & Sengupta, A. Self-regulation of phenotypic noise synchronizes emergent organization and active transport in confluent microbial environments. Nat. Phys. 18, 945–951 (2022). DOI: 10.1038/s41567-022-01641-9
Tuson, H. H. et al. Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity. Mol. Microbiol. 84, 874–891 (2012). DOI: 10.1111/j.1365-2958.2012.08063.x
Cesar, S. & Huang, K. C. Thinking big: the tunability of bacterial cell size. FEMS Microbiol. Rev. 41, 672–678 (2017). DOI: 10.1093/femsre/fux026
Amir, A. Cell size regulation in bacteria. Phys. Rev. Lett. 112, 208102 (2014). DOI: 10.1103/PhysRevLett.112.208102
Campos, M. et al. A constant size extension drives bacterial cell size homeostasis. Cell 159, 1433–1446 (2014). DOI: 10.1016/j.cell.2014.11.022
Taheri-Araghi, S. et al. Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385–391 (2015). DOI: 10.1016/j.cub.2014.12.009
Si, F. et al. Mechanistic origin of cell-size control and homeostasis in bacteria. Curr. Biol. 29, 1760–1770 (2019). DOI: 10.1016/j.cub.2019.04.062
Delgado-Campos, A. & Cuetos, A. Influence of homeostatic mechanisms of bacterial growth and division on structural properties of microcolonies: A computer simulation study. Phys. Rev. E 106, 034402 (2022). DOI: 10.1103/PhysRevE.106.034402
Farrell, F. D. C., Hallatschek, O., Marenduzzo, D. & Waclaw, B. Mechanically driven growth of quasi-two-dimensional microbial colonies. Phys. Rev. Lett. 111, 168101 (2013). DOI: 10.1103/PhysRevLett.111.168101
Farrell, F. D., Gralka, M., Hallatschek, O. & Waclaw, B. Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations. J. R. Soc. Interface 14, 20170073 (2017). DOI: 10.1098/rsif.2017.0073
Schnyder, S. K., Molina, J. J. & Yamamoto, R. Control of cell colony growth by contact inhibition. Sci. Rep. 10, 6713 (2020). DOI: 10.1038/s41598-020-62913-z
Langeslay, B. & Juarez, G. Microdomains and stress distributions in bacterial monolayers on curved interfaces. Soft Matter 19, 3605–3613 (2023).
Puliafito, A. et al. Collective and single cell behavior in epithelial contact inhibition. Proc. Natl Acad. Sci. USA 109, 739–744 (2012). DOI: 10.1073/pnas.1007809109
Cox, C. D., Bavi, N. & Martinac, B. Bacterial mechanosensors. Annu. Rev. Physiol. 80, 71–93 (2018). DOI: 10.1146/annurev-physiol-021317-121351
Gordon, V. D. & Wang, L. Bacterial mechanosensing: the force will be with you, always. J. Cell Sci. 132, jcs227694 (2019). DOI: 10.1242/jcs.227694
Podewitz, N., Delarue, M. & Elgeti, J. Tissue homeostasis: A tensile state. Europhys. Lett. 109, 58005 (2015). DOI: 10.1209/0295-5075/109/58005
Podewitz, N., Jülicher, F., Gompper, G. & Elgeti, J. Interface dynamics of competing tissues. New J. Phys. 18, 083020 (2016). DOI: 10.1088/1367-2630/18/8/083020
Mishra, R. et al. Protein kinase C and calcineurin cooperatively mediate cell survival under compressive mechanical stress. Proc. Natl Acad. Sci. USA 114, 13471–13476 (2017). DOI: 10.1073/pnas.1709079114
van Drogen, F. et al. Mechanical stress impairs pheromone signaling via Pkc1-mediated regulation of the MAPK scaffold Ste5. J. Cell Biol. 218, 3117–3133 (2019). DOI: 10.1083/jcb.201808161
Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012). DOI: 10.1016/j.physrep.2012.03.004
Bär, M., Großmann, R., Heidenreich, S. & Peruani, F. Self-propelled rods: Insights and perspectives for active matter. Annu. Rev. Condens. Matter Phys. 11, 441–466 (2020). DOI: 10.1146/annurev-conmatphys-031119-050611
Kraikivski, P., Lipowsky, R. & Kierfeld, J. Enhanced ordering of interacting filaments by molecular motors. Phys. Rev. Lett. 96, 258103 (2006). DOI: 10.1103/PhysRevLett.96.258103
Narayan, V., Ramaswamy, S. & Menon, N. Long-lived giant number fluctuations in a swarming granular nematic. Science 317, 105–108 (2007). DOI: 10.1126/science.1140414
Díaz-De Armas, A., Maza-Cuello, M., Martínez-Ratón, Y. & Velasco, E. Domain walls in vertically vibrated monolayers of cylinders confined in annuli. Phys. Rev. Res. 2, 033436 (2020). DOI: 10.1103/PhysRevResearch.2.033436
Kumar, N., Gupta, R. K., Soni, H., Ramaswamy, S. & Sood, A. K. Trapping and sorting active particles: Motility-induced condensation and smectic defects. Phys. Rev. E 99, 032605 (2019). DOI: 10.1103/PhysRevE.99.032605
Kozhukhov, T. & Shendruk, T. N. Mesoscopic simulations of active nematics. Sci. Adv. 8, eabo5788 (2022). DOI: 10.1126/sciadv.abo5788
Marconi, U. M. B. & Tarazona, P. Dynamic density functional theory of fluids. J. Chem. Phys. 110, 8032–8044 (1999). DOI: 10.1063/1.478705
Archer, A. J. & Evans, R. Dynamical density functional theory and its application to spinodal decomposition. J. Chem. Phys. 121, 4246–4254 (2004). DOI: 10.1063/1.1778374
te Vrugt, M., Löwen, H. & Wittkowski, R. Classical dynamical density functional theory: from fundamentals to applications. Adv. Phys. 69, 121–247 (2020). DOI: 10.1080/00018732.2020.1854965
Chauviere, A., Hatzikirou, H., Kevrekidis, I. G., Lowengrub, J. S. & Cristini, V. Dynamic density functional theory of solid tumor growth: preliminary models. AIP Adv. 2, 011210 (2012). DOI: 10.1063/1.3699065
Al-Saedi, H. M., Archer, A. J. & Ward, J. Dynamical density-functional-theory-based modeling of tissue dynamics: application to tumor growth. Phys. Rev. E 98, 022407 (2018). DOI: 10.1103/PhysRevE.98.022407
Shimaya, T. & Takeuchi, K. A. Tilt-induced polar order and topological defects in growing bacterial populations. PNAS Nexus 1, pgac269 (2022). DOI: 10.1093/pnasnexus/pgac269
Wang, P. et al. Robust growth of escherichia coli. Curr. Biol. 20, 1099–1103 (2010). DOI: 10.1016/j.cub.2010.04.045
Yang, D., Jennings, A. D., Borrego, E., Retterer, S. T. & Männik, J. Analysis of factors limiting bacterial growth in pdms mother machine devices. Front. Microbiol. 9, 871 (2018). DOI: 10.3389/fmicb.2018.00871
Giometto, A., Nelson, D. R. & Murray, A. W. Physical interactions reduce the power of natural selection in growing yeast colonies. Proc. Natl Acad. Sci. USA 115, 11448–11453 (2018). DOI: 10.1073/pnas.1809587115
Beroz, F. et al. Verticalization of bacterial biofilms. Nat. Phys. 14, 954–960 (2018). DOI: 10.1038/s41567-018-0170-4
Nijjer, J. et al. Mechanical forces drive a reorientation cascade leading to biofilm self-patterning. Nat. Commun. 12, 6632 (2021). DOI: 10.1038/s41467-021-26869-6
Mukherjee, A. et al. Cell wall fluidization by mechano-endopeptidases sets up a turgor-mediated volumetric pacemaker. Preprint at bioRxiv 10.1101/2023.08.31.555748 (2023).
Malmi-Kakkada, A. N., Li, X., Samanta, H. S., Sinha, S. & Thirumalai, D. Cell growth rate dictates the onset of glass to fluidlike transition and long time superdiffusion in an evolving cell colony. Phys. Rev. X 8, 021025 (2018).
Banwarth-Kuhn, M., Collignon, J. & Sindi, S. Quantifying the biophysical impact of budding cell division on the spatial organization of growing yeast colonies. Appl. Sci. 10, 5780 (2020). DOI: 10.3390/app10175780
Colin, A., Micali, G., Faure, L., Lagomarsino, M. C. & van Teeffelen, S. Two different cell-cycle processes determine the timing of cell division in Escherichia coli. Elife 10, e67495 (2021). DOI: 10.7554/eLife.67495
Li, J., Schnyder, S. K., Turner, M. S. & Yamamoto, R. Role of the cell cycle in collective cell dynamics. Phys. Rev. X 11, 031025 (2021).
Li, J., Schnyder, S. K., Turner, M. S. & Yamamoto, R. Competition between cell types under cell cycle regulation with apoptosis. Phys. Rev. Res. 4, 033156 (2022). DOI: 10.1103/PhysRevResearch.4.033156
Allocati, N., Masulli, M., Di Ilio, C. & De Laurenzi, V. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 6, e1609 (2015). DOI: 10.1038/cddis.2014.570
Ghosh, P. & Levine, H. Morphodynamics of a growing microbial colony driven by cell death. Phys. Rev. E 96, 052404 (2017). DOI: 10.1103/PhysRevE.96.052404
Yanni, D., Márquez-Zacarías, P., Yunker, P. J. & Ratcliff, W. C. Drivers of spatial structure in social microbial communities. Curr. Biol. 29, R545–R550 (2019). DOI: 10.1016/j.cub.2019.03.068
Tse, H. T. K., Weaver, W. M. & Di Carlo, D. Increased asymmetric and multi-daughter cell division in mechanically confined microenvironments. PLoS ONE 7, e38986 (2012). DOI: 10.1371/journal.pone.0038986
Frost, I. et al. Cooperation, competition and antibiotic resistance in bacterial colonies. ISME J. 12, 1582–1593 (2018). DOI: 10.1038/s41396-018-0090-4
Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004). DOI: 10.1126/science.1099390
Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005). DOI: 10.1126/science.1114383
Wrande, M., Roth, J. R. & Hughes, D. Accumulation of mutants in “aging” bacterial colonies is due to growth under selection, not stress-induced mutagenesis. Proc. Natl Acad. Sci. USA 105, 11863–11868 (2008). DOI: 10.1073/pnas.0804739105
Hashuel, R. & Ben-Yehuda, S. Aging of a bacterial colony enforces the evolvement of nondifferentiating mutants. MBio 10, e01414-19 (2019). DOI: 10.1128/mBio.01414-19
Hornung, R. et al. Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation. J. R. Soc. Interface 15, 20170713 (2018). DOI: 10.1098/rsif.2017.0713
Yoda, I. et al. Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion. BMC Microbiol. 14, 1–7 (2014). DOI: 10.1186/s12866-014-0234-2
Zheng, S. et al. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front. Bioeng. Biotechnol. 9, 643722 (2021). DOI: 10.3389/fbioe.2021.643722
Volfson, D., Cookson, S., Hasty, J. & Tsimring, L. S. Biomechanical ordering of dense cell populations. Proc. Natl Acad. Sci. USA 105, 15346–15351 (2008). DOI: 10.1073/pnas.0706805105
You, Z., Pearce, D. J. G. & Giomi, L. Confinement-induced self-organization in growing bacterial colonies. Sci. Adv. 7, eabc8685 (2021). DOI: 10.1126/sciadv.abc8685
Zhang, H.-P., Be’er, A., Florin, E.-L. & Swinney, H. L. Collective motion and density fluctuations in bacterial colonies. Proc. Natl Acad. Sci. USA 107, 13626–13630 (2010). DOI: 10.1073/pnas.1001651107
Liu, J. et al. Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature 523, 550–554 (2015). DOI: 10.1038/nature14660
Bera, P., Wasim, A. & Ghosh, P. A mechanistic understanding of microcolony morphogenesis: coexistence of mobile and sessile aggregates. Soft Matter 19, 1034–1045 (2023). DOI: 10.1039/D2SM01365G
Doostmohammadi, A., Thampi, S. P. & Yeomans, J. M. Defect-mediated morphologies in growing cell colonies. Phys. Rev. Lett. 117, 048102 (2016). DOI: 10.1103/PhysRevLett.117.048102
Dell’Arciprete, D. et al. A growing bacterial colony in two dimensions as an active nematic. Nat. Commun. 9, 4190 (2018). DOI: 10.1038/s41467-018-06370-3
Los, R. et al. Defect dynamics in growing bacterial colonies. Preprint at https://arxiv.org/abs/2003.10509 (2022).
Boyer, D. et al. Buckling instability in ordered bacterial colonies. Phys. Biol. 8, 026008 (2011). DOI: 10.1088/1478-3975/8/2/026008
Wittmann, R., Cortes, L. B. G., Löwen, H. & Aarts, D. G. A. L. Particle-resolved topological defects of smectic colloidal liquid crystals in extreme confinement. Nat. Commun. 12, 623 (2021). DOI: 10.1038/s41467-020-20842-5
Monderkamp, P. A. et al. Topology of orientational defects in confined smectic liquid crystals. Phys. Rev. Lett. 127, 198001 (2021). DOI: 10.1103/PhysRevLett.127.198001
Xia, J., MacLachlan, S., Atherton, T. J. & Farrell, P. E. Structural landscapes in geometrically frustrated smectics. Phys. Rev. Lett. 126, 177801 (2021). DOI: 10.1103/PhysRevLett.126.177801
Paget, J., Mazza, M. G., Archer, A. J. & Shendruk, T. N. Complex-tensor theory of simple smectics. Nat. Commun. 14, 1048 (2023). DOI: 10.1038/s41467-023-36506-z
Ingham, D. B.; Pop, I. Transport Phenomena in Porous Media (Elsevier, 1998).
Or, D., Smets, B. F., Wraith, J. M., Dechesne, A. & Friedman, S. P. Physical constraints affecting bacterial habitats and activity in unsaturated porous media–a review. Adv. Water Resour. 30, 1505–1527 (2007). DOI: 10.1016/j.advwatres.2006.05.025
Drescher, K. et al. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. Proc. Natl Acad. Sci. USA 113, E2066–E2072 (2016). DOI: 10.1073/pnas.1601702113
Warren, M. R. et al. Spatiotemporal establishment of dense bacterial colonies growing on hard agar. Elife 8, e41093 (2019). DOI: 10.7554/eLife.41093
Pönisch, W. et al. Pili mediated intercellular forces shape heterogeneous bacterial microcolonies prior to multicellular differentiation. Sci. Rep. 8, 16567 (2018). DOI: 10.1038/s41598-018-34754-4
Kuan, H.-S., Pönisch, W., Jülicher, F. & Zaburdaev, V. Continuum theory of active phase separation in cellular aggregates. Phys. Rev. Lett. 126, 018102 (2021). DOI: 10.1103/PhysRevLett.126.018102
Ni, B., Colin, R., Link, H., Endres, R. G. & Sourjik, V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc. Natl Acad. Sci. USA 117, 595–601 (2020). DOI: 10.1073/pnas.1910849117
Sarkar, D., Gompper, G. & Elgeti, J. A minimal model for structure, dynamics, and tension of monolayered cell colonies. Commun. Phys. 4, 36 (2021). DOI: 10.1038/s42005-020-00515-x
Breoni, D., Schwarzendahl, F. J., Blossey, R. & Löwen, H. A one-dimensional three-state run-and-tumble model with a ‘cell cycle’. Eur. Phys. J. E 45, 83 (2022). DOI: 10.1140/epje/s10189-022-00238-7
Liu, W. et al. Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization. Front. Microbiol. 7, 1366 (2016). DOI: 10.3389/fmicb.2016.01366
Basaran, M., Yaman, Y. I., Yüce, T. C., Vetter, R. & Kocabas, A. Large-scale orientational order in bacterial colonies during inward growth. Elife 11, e72187 (2022). DOI: 10.7554/eLife.72187
Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016). DOI: 10.1038/nrmicro.2016.84
Ghosh, P., Mondal, J., Ben-Jacob, E. & Levine, H. Mechanically-driven phase separation in a growing bacterial colony. Proc. Natl Acad. Sci. USA 112, E2166–E2173 (2015). DOI: 10.1073/pnas.1504948112
Fridman, O., Goldberg, A., Ronin, I., Shoresh, N. & Balaban, N. Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513, 418–421 (2014). DOI: 10.1038/nature13469
Kauffman, K. M. et al. Resolving the structure of phage–bacteria interactions in the context of natural diversity. Nat. Commun. 13, 372 (2022). DOI: 10.1038/s41467-021-27583-z
Elder, K. R., Provatas, N., Berry, J., Stefanovic, P. & Grant, M. Phase-field crystal modeling and classical density functional theory of freezing. Phys. Rev. B 75, 064107 (2007). DOI: 10.1103/PhysRevB.75.064107
van Teeffelen, S., Backofen, R., Voigt, A. & Löwen, H. Derivation of the phase-field-crystal model for colloidal solidification. Phys. Rev. E 79, 051404 (2009). DOI: 10.1103/PhysRevE.79.051404
Elder, K. R., Katakowski, M., Haataja, M. & Grant, M. Modeling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002). DOI: 10.1103/PhysRevLett.88.245701
Doostmohammadi, A., Ignés-Mullol, J., Yeomans, J. M. & Sagués, F. Active nematics. Nat. Commun. 9, 3246 (2018). DOI: 10.1038/s41467-018-05666-8
Copenhagen, K., Alert, R., Wingreen, N. S. & Shaevitz, J. W. Topological defects promote layer formation in Myxococcus xanthus colonies. Nat. Phys. 17, 211–215 (2021). DOI: 10.1038/s41567-020-01056-4
Evans, R. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143–200 (1979). DOI: 10.1080/00018737900101365
Archer, A. J. & Evans, R. Binary gaussian core model: Fluid-fluid phase separation and interfacial properties. Phys. Rev. E 64, 041501 (2001). DOI: 10.1103/PhysRevE.64.041501
Vanderlick, T. K., Davis, H. T. & Percus, J. K. The statistical mechanics of inhomogeneous hard rod mixtures. J. Chem. Phys. 91, 7136–7145 (1989). DOI: 10.1063/1.457329
Wittmann, R., Sitta, C. E., Smallenburg, F. & Löwen, H. Phase diagram of two-dimensional hard rods from fundamental mixed measure density functional theory. J. Chem. Phys. 147, 134908 (2017). DOI: 10.1063/1.4996131
Wittmann, R., Marechal, M. & Mecke, K. Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape. J. Phys. Condens. Matter 28, 244003 (2016). DOI: 10.1088/0953-8984/28/24/244003
Verhulst, P.-F. Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 10, 113–129 (1838).
Vandermeer, J. How populations grow: the exponential and logistic equations. Nat. Educ. Knowl. 3, 15 (2010).
Korolev, K. S., Avlund, M., Hallatschek, O. & Nelson, D. R. Genetic demixing and evolution in linear stepping stone models. Rev. Mod. Phys. 82, 1691 (2010). DOI: 10.1103/RevModPhys.82.1691
Pigolotti, S., Benzi, R., Jensen, M. H. & Nelson, D. R. Population genetics in compressible flows. Phys. Rev. Lett. 108, 128102 (2012). DOI: 10.1103/PhysRevLett.108.128102
Fujikawa, H., Kai, A. & Morozumi, S. A new logistic model for bacterial growth. J. Food Hyg. Soc. Jpn. 44, 155–160 (2003). DOI: 10.3358/shokueishi.44.155
Pinto, C. & Shimakawa, K. A compressed logistic equation on bacteria growth: inferring time-dependent growth rate. Phys. Biol. 19, 066003 (2022). DOI: 10.1088/1478-3975/ac8c15
Berg, S. et al. Ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019). DOI: 10.1038/s41592-019-0582-9