COVID-19; Drug discovery; Mechanistic modeling; Signaling pathway; Systems biology; Biochemistry; Molecular Biology; Genetics; Computer Science Applications; Computational Theory and Mathematics; Computational Mathematics
Abstract :
[en] Here we present a web interface that implements a comprehensive mechanistic model of the SARS-CoV-2 disease map. In this framework, the detailed activity of the human signaling circuits related to the viral infection, covering from the entry and replication mechanisms to the downstream consequences as inflammation and antigenic response, can be inferred from gene expression experiments. Moreover, the effect of potential interventions, such as knock-downs, or drug effects (currently the system models the effect of more than 8000 DrugBank drugs) can be studied. This freely available tool not only provides an unprecedentedly detailed view of the mechanisms of viral invasion and the consequences in the cell but has also the potential of becoming an invaluable asset in the search for efficient antiviral treatments.
Disciplines :
Biotechnology
Author, co-author :
Rian, Kinza; Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain
Esteban-Medina, Marina; Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain ; Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, 41013, Sevilla, Spain
Hidalgo, Marta R; Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
Çubuk, Cankut; Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain
Falco, Matias M; Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain ; Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain
Loucera, Carlos; Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain ; Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, 41013, Sevilla, Spain
Gunyel, Devrim; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
OSTASZEWSKI, Marek ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Peña-Chilet, María; Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain. maria.pena.chilet.ext@juntadeandalucia.es ; Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, 41013, Sevilla, Spain. maria.pena.chilet.ext@juntadeandalucia.es ; Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain. maria.pena.chilet.ext@juntadeandalucia.es
Dopazo, Joaquín ; Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain. joaquin.dopazo@juntadeandalucia.es ; Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, 41013, Sevilla, Spain. joaquin.dopazo@juntadeandalucia.es ; Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain. joaquin.dopazo@juntadeandalucia.es ; Functional Genomics Node (INB-ELIXIR-es), Sevilla, Spain. joaquin.dopazo@juntadeandalucia.es
External co-authors :
yes
Language :
English
Title :
Mechanistic modeling of the SARS-CoV-2 disease map.
Ministerio de Economía y Competitividad Instituto de Salud Carlos III FP7 People: Marie-Curie Actions
Funding text :
This work is supported by grants SAF2017–88908-R from the Spanish Ministry of Economy and Competitiveness, PT17/0009/0006, ACCI2018/29 from CIBER-ISCIII and COV20/00788 from the ISCIII, co-funded with European Regional Development Funds (ERDF), the grant “Large-scale drug repurposing in rare diseases by genomic Big Data analysis with machine learning methods” from the Fundación BBVA (G999088Q), as well as H2020 Programme of the European Union grants Marie Curie Innovative Training Network “Machine Learning Frontiers in Precision Medicine” (MLFPM) (GA 813533).
Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470–3. DOI: 10.1016/S0140-6736(20)30185-9
Ostaszewski M, Gebel S, Kuperstein I, Mazein A, Zinovyev A, Dogrusoz U, et al. Community-driven roadmap for integrated disease maps. Briefings Bioinformatics. 2019;20(2):659–70. DOI: 10.1093/bib/bby024
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–68. DOI: 10.1038/s41586-020-2286-9
Ostaszewski M, Mazein A, Gillespie ME, Kuperstein I, Niarakis A, Hermjakob H, et al. COVID-19 Disease Map, building a computational repository of SARS-CoV-2 virus-host interaction mechanisms. Scientific Data. 2020;7(1):136. DOI: 10.1038/s41597-020-0477-8
Mazein A, Ostaszewski M, Kuperstein I, Watterson S, Le Novère N, Lefaudeux D, et al. Systems medicine disease maps: community-driven comprehensive representation of disease mechanisms. npj Systems Biol Applications. 2018;4(1):21. DOI: 10.1038/s41540-018-0059-y
Yu MK, Kramer M, Dutkowski J, Srivas R, Licon K, Kreisberg JF, et al. Translation of genotype to phenotype by a hierarchy of cell subsystems. Cell Systems. 2016;2(2):77–88. DOI: 10.1016/j.cels.2016.02.003
Hidalgo MR, Cubuk C, Amadoz A, Salavert F, Carbonell-Caballero J, Dopazo J. High throughput estimation of functional cell activities reveals disease mechanisms and predicts relevant clinical outcomes. Oncotarget. 2017;8(3):5160–78. DOI: 10.18632/oncotarget.14107
Çubuk C, Hidalgo MR, Amadoz A, Rian K, Salavert F, Pujana MA, et al. Differential metabolic activity and discovery of therapeutic targets using summarized metabolic pathway models. NPJ Systems Biology. 2019;5(1):7. DOI: 10.1038/s41540-019-0087-2
Cubuk C, Hidalgo MR, Amadoz A, Pujana MA, Mateo F, Herranz C, et al. Gene expression integration into pathway modules reveals a pan-cancer metabolic landscape. Cancer Research. 2018;78(21):6059–72. DOI: 10.1158/0008-5472.CAN-17-2705
Fey D, Halasz M, Dreidax D, Kennedy SP, Hastings JF, Rauch N, et al. Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients. Sci Signal. 2015;8(408):ra130. DOI: 10.1126/scisignal.aab0990
Hidalgo MR, Amadoz A, Cubuk C, Carbonell-Caballero J, Dopazo J. Models of cell signaling uncover molecular mechanisms of high-risk neuroblastoma and predict disease outcome. Biology Direct. 2018;13(1):16. DOI: 10.1186/s13062-018-0219-4
Chacón-Solano E, León C, Díaz F, García-García F, García M, Escámez M, et al. Fibroblasts activation and abnormal extracellular matrix remodelling as common hallmarks in three cancer-prone genodermatoses. J British Journal of Dermatology. 2019;181(3):512–22. DOI: 10.1111/bjd.17698
Peña-Chilet M, Esteban-Medina M, Falco MM, Rian K, Hidalgo MR, Loucera C, et al. Using mechanistic models for the clinical interpretation of complex genomic variation. Scientific Reports. 2019;9(1):1–12. DOI: 10.1038/s41598-019-55454-7
Amadoz A, Sebastian-Leon P, Vidal E, Salavert F, Dopazo J. Using activation status of signaling pathways as mechanism-based biomarkers to predict drug sensitivity. Scientific Reports. 2015;5:18494. DOI: 10.1038/srep18494
Falco MM, Peña-Chilet M, Loucera C, Hidalgo MR, Dopazo J. Mechanistic models of signaling pathways deconvolute the glioblastoma single-cell functional landscape. NAR Cancer. 2020;2(2):zcaa011.
Saez-Rodriguez J, Blüthgen N. Personalized signaling models for personalized treatments. Molecular Systems Biology. 2020;16(1):e9042.
Hastings JF, O'Donnell Y, Fey D, Croucher DR. Applications of personalised signalling network models in precision oncology. Pharmacology Therapeutics. 2020;212:107555.
Razzoli M, Frontini A, Gurney A, Mondini E, Cubuk C, Katz LS, et al. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis. Molecular Metabolism. 2016;5(1):19–33. DOI: 10.1016/j.molmet.2015.10.005
Ferreira PG, Muñoz-Aguirre M, Reverter F, CPS G, Sousa A, Amadoz A, et al. The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nature Communications. 2018, 9(1):490.
Hernansaiz-Ballesteros RD, Salavert F, Sebastian-Leon P, Aleman A, Medina I, Dopazo J. Assessing the impact of mutations found in next generation sequencing data over human signaling pathways. Nucleic Acids Res. 2015;43(W1):W270–5. DOI: 10.1093/nar/gkv349
Salavert F, Hidalgo MR, Amadoz A, Cubuk C, Medina I, Crespo D, et al. Actionable pathways: interactive discovery of therapeutic targets using signaling pathway models, Nucleic Acids Res. 2016;44(W1):W212–6.
Esteban-Medina M, Peña-Chilet M, Loucera C, Dopazo J. Exploring the druggable space around the Fanconi anemia pathway using machine learning and mechanistic models. BMC Bioinformatics. 2019;20(1):370. DOI: 10.1186/s12859-019-2969-0
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research. 2015;44(D1):D457–D62. DOI: 10.1093/nar/gkv1070
UniProt_Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic acids research. 2018;47(D1):D506–D15.
Amadoz A, Hidalgo MR, Çubuk C, Carbonell-Caballero J, Dopazo J. A comparison of mechanistic signaling pathway activity analysis methods. Briefings Bioinformatics. 2019;20(5):1655–68. DOI: 10.1093/bib/bby040
Mitsos A, Melas IN, Siminelakis P, Chairakaki AD, Saez-Rodriguez J, Alexopoulos LG. Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data. PLoS Comput Biol. 2009;5(12):e1000591. DOI: 10.1371/journal.pcbi.1000591
Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181(5):1036–45 e9. DOI: 10.1016/j.cell.2020.04.026
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience trends. 2020;14:72-73.
Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery. 2020;6(1):1–18.
Tsuboi N, Yoshikai Y, Matsuo S, Kikuchi T, Iwami K, Nagai Y, et al. Roles of toll-like receptors in C-C chemokine production by renal tubular epithelial cells. J Immunol. 2002;169(4):2026–33. DOI: 10.4049/jimmunol.169.4.2026
Perkins DJ, Vogel SN. Space and time: New considerations about the relationship between Toll-like receptors (TLRs) and type I interferons (IFNs). Cytokine. 2015;74(2):171–4. DOI: 10.1016/j.cyto.2015.03.001
Yarilina A, Ivashkiv LB. Type I interferon: a new player in TNF signaling. Curr Dir Autoimmun. 2010;11:94–104. DOI: 10.1159/000289199
Gritti G, Raimondi F, Ripamonti D, Riva I, Landi F, Alborghetti L, et al. IL-6 signalling pathway inactivation with siltuximab in patients with COVID-19 respiratory failure: an observational cohort study. medRxiv. 2020:2020.04.01.20048561.
Mercatelli D, Holding AN, Giorgi FM. Web tools to fight pandemics: the COVID-19 experience. Brief Bioinform. 2020:bbaa261. 10.1093/bib/bbaa261. Epub ahead of print.