[en] The linguistic counting system of deaf signers consists of a manual counting format that uses specific structures for number words. Interestingly, the number signs from 1 to 4 in the Belgian sign languages correspond to the finger-montring habits of hearing individuals. These hand configurations could therefore be considered as signs (i.e., part of a language system) for deaf, while they would simply be number gestures (not linguistic) for hearing controls. A Fast Periodic Visual Stimulation design was used with electroencephalography recordings to examine whether these finger-number configurations are differently processed by the brain when they are signs (in deaf signers) as compared to when they are gestures (in hearing controls). Results showed that deaf signers show stronger discrimination responses to canonical finger-montring configurations compared to hearing controls. A second control experiment furthermore demonstrated that this finding was not merely due to the experience deaf signers have with the processing of hand configurations, as brain responses did not differ between groups for finger-counting configurations. Number configurations are therefore processed differently by deaf signers, but only when these configurations are part of their language system.
Disciplines :
Neurosciences & behavior
Author, co-author :
Buyle, Margot ; Psychological Sciences Research Institute (IPSY) and Institute of NeuroScience (IoNS), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
LOCHY, Aliette ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Cognitive Science and Assessment ; Psychological Sciences Research Institute (IPSY) and Institute of NeuroScience (IoNS), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Vencato, Valentina; Psychological Sciences Research Institute (IPSY) and Institute of NeuroScience (IoNS), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Crollen, Virginie; Psychological Sciences Research Institute (IPSY) and Institute of NeuroScience (IoNS), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
External co-authors :
yes
Language :
English
Title :
Stronger neural response to canonical finger-number configurations in deaf compared to hearing adults revealed by FPVS-EEG.
This work was supported by the Incentive Grant for Scientific Research (MIS, Grant no F.4505.19) and a “Projet De Recherche” (PDR, Grant no. T.0036.22.) granted by the Fund for Scientific Research–National Fund for Scientific Research (FRS–FNRS, Belgium) to VC; the Faculty of Humanities, Education and Social Sciences of the University of Luxembourg to AL; and a Wallonie Bruxelles International Excellence World Grant to MB. This study benefitted from the statistical consult of the Statistical Methodology and Computing Service, technological platform at UCLouvain–SMCS/LIDAM, UCLouvain. The authors would like to thank all the individuals who participated in this study.
Alencar, C. D. C., Butler, B. E., & Lomber, S. G. (2019). What and how the deaf brain sees. Journal of Cognitive Neuroscience, 31(8), 1091–1109. https://doi.org/10.1162/jocn_a_01425
Andres, M., Di Luca, S., & Pesenti, M. (2008). Finger counting: The missing tool? Behavioral and Brain Sciences, 31(6), 642–643. https://doi.org/10.1017/S0140525X08005578
Baker, S. A., Idsardi, W. J., Golinkoff, R. M., & Petitto, L. A. (2005). The perception of handshapes in American sign language. Memory & Cognition, 33(5), 887–904. https://doi.org/10.3758/bf03193083
Barth, H., Beckmann, L., & Spelke, E. S. (2008). Nonsymbolic, approximate arithmetic in children: Abstract addition prior to instruction. Developmental Psychology, 44(5), 1466–1477. https://doi.org/10.1037/a0013046
Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic arithmetic in adults and young children. Cognition, 98, 199–222. https://doi.org/10.1016/j.cognition.2004.09.011
Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 14116–14121. https://doi.org/10.1073/pnas.0505512102
Benetti, S., van Ackeren, M. J., Rabini, G., Zonca, J., Foa, V., Baruffaldi, F., Rezk, M., Pavania, F., Rossion, B., & Collignon, O. (2017). Functional selectivity for face processing in the temporal voice area of early deaf individuals. Proceedings of the National Academy of Sciences of the United States of America, 114(31), E6437–E6446.
Berteletti, I., Sullivan, S. J., & Lancaster, L. (2021). The unexplored role of handshape similarity in processing numbers on the hands. Journal of Numerical Cognition, 7(2), 156–171. https://doi.org/10.5964/jnc.6997
Bottari, D., Bednaya, E., Dormal, G., Villwock, A., Dzhelyova, M., Grin, K., … Röder, B. (2020). EEG frequency-tagging demonstrates increased left hemispheric involvement and crossmodal plasticity for face processing in congenitally deaf signers. NeuroImage, 223, 117315.
Bottari, D., Caclin, A., Giard, M. H., & Pavani, F. (2011). Changes in early cortical visual processing predict enhanced reactivity in deaf individuals. PLoS One, 6(9), e25607. https://doi.org/10.1371/journal.pone.0025607
Butterworth, B. (1999). The mathematical brain. Macmillan.
Buyle, M., & Crollen, V. (2022). Deafness and early language deprivation influence arithmetic performances. Frontiers in Human Neuroscience, 16, 1000598. https://doi.org/10.3389/fnhum.2022.1000598
Buyle, M., Vencato, V., & Crollen, V. (2022). Impact of deafness on numerical tasks implying visuospatial and verbal processes. Scientific Reports, 12(1), 11150. https://doi.org/10.1038/s41598-022-14728-3
Cardin, V., Grin, K., Vinogradova, V., & Manini, B. (2020). Crossmodal reorganisation in deafness: Mechanisms for functional preservation and functional change. Neuroscience and Biobehavioral Reviews, 113, 227–237. https://doi.org/10.1016/j.neubiorev.2020.03.019
Carey, S. (1998). Knowledge of number: Its evolution and ontogeny. Science, 282, 641–642. https://doi.org/10.1126/science.282.5389.641
Carey, S., & Barner, D. (2019). Ontogenetic origins of human integer representations. Trends in Cognitive Sciences, 23(10), 823–835. https://doi.org/10.1016/j.tics.2019.07.004
Chochon, F., Cohen, L., van de Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11(6), 617–630. https://doi.org/10.1162/089892999563689
Dehaene, S. (1997). The number sense. Oxford University Press.
Dehaene, S. (2001). Précis of the number sense. Mind & Language, 16(1), 16–36. https://doi.org/10.1111/1468-0017.00154
Dehaene, S. (2011). The number sense: How the mind creates mathematics. Oxford University Press.
Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384–398. https://doi.org/10.1016/j.neuron.2007.10.004
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487–506. https://doi.org/10.1080/02643290244000239
Dell Ducas, K., Senra Filho, A., Silva, P. H. R., Secchinato, K. F., Leoni, R. F., & Santos, A. C. (2021). Functional and structural brain connectivity in congenital deafness. Brain Structure & Function, 226(4), 1323–1333. https://doi.org/10.1007/s00429-021-02243-6
Deng, Q., Gu, F., & Tong, S. X. (2020). Lexical processing in sign language: A visual mismatch negativity study. Neuropsychologia, 148, 107629. https://doi.org/10.1016/j.neuropsychologia.2020.107629
Di Luca, S., Grana, A., Semenza, C., Seron, X., & Pesenti, M. (2006). Finger-digit compatibility in Arabic numeral processing. Quarterly Journal of Experimental Psychology, 59(9), 1648–1663. https://doi.org/10.1080/17470210500256839
Di Luca, S., & Pesenti, M. (2008). Masked priming effect with canonical finger numeral configurations. Experimental Brain Research, 185(1), 27–39. https://doi.org/10.1007/s00221-007-1132-8
Eger, E., Sterzer, P., Russ, M. O., Giraud, A. L., & Kleinschmidt, A. (2003). A supramodal number representation in human intraparietal cortex. Neuron, 37(4), 719–725. https://doi.org/10.1016/s0896-6273(03)00036-9
Emmorey, K., McCullough, S., & Brentari, D. (2003). Categorical perception in American sign language. Language and Cognitive Processes, 18, 21–45. https://doi.org/10.1080/01690960143000416
Emmorey, K., McCullough, S., Mehta, S., Ponto, L. L., & Grabowski, T. J. (2011). Sign language and pantomime production differentially engage frontal and parietal cortices. Language & Cognitive Processes, 26(7), 878–901. https://doi.org/10.1080/01690965.2010.492643
Fayol, M., & Seron, X. (2005). About numerical representations: Insights from neuropsychological, experimental, and developmental studies. In Handbook of mathematical cognition (pp. 3–22). Psychology Press.
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. https://doi.org/10.1016/j.tics.2004.05.002
Grote, K., & Linz, E. (2003). The influence of sign language iconicity on semantic conceptualization. In From sign to signing: Iconicity in language and literature (Vol. 3, pp. 23–40). John Benjamins Publishing Company.
Guillaume, M., Mejias, S., Rossion, B., Dzhelyova, M., & Schiltz, C. (2018). A rapid, objective and implicit measure of visual quantity discrimination. Neuropsychologia, 111, 180–189. https://doi.org/10.1016/j.neuropsychologia.2018.01.044
Guillaume, M., Poncin, A., Schiltz, C., & Van Rinsveld, A. (2020). Measuring spontaneous and automatic processing of magnitude and parity information of Arabic digits by frequency-tagging EEG. Scientific Reports, 10(1), 22254. https://doi.org/10.1038/s41598-020-79404-w
Gunderson, E. A., Spaepen, E., Gibson, D., Goldin-Meadow, S., & Levine, S. C. (2015). Gesture as a window onto children's number knowledge. Cognition, 144, 14–28.
Gwinn, O. S., & Jiang, F. (2020). Hemispheric asymmetries in deaf and hearing during sustained peripheral selective attention. Journal of Deaf Studies and Deaf Education, 25(1), 1–9.
Holloway, I. D., Price, G. R., & Ansari, D. (2010). Common and segregated neural pathways for the processing of symbolic and nonsymbolic numerical magnitude: An fMRI study. NeuroImage, 49(1), 1006–1017. https://doi.org/10.1016/j.neuroimage.2009.07.071
Kaufmann, L., Vogel, S. E., Wood, G., Kremser, C., Schocke, M., Zimmerhackl, L. B., & Koten, J. W. (2008). A developmental fMRI study of nonsymbolic numerical and spatial processing. Cortex, 44(4), 376–385. https://doi.org/10.1016/j.cortex.2007.08.003
Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25, 95–103. https://doi.org/10.1016/j.learninstruc.2012.12.001
Lafay, A., Thevenot, C., Castel, C., & Fayol, M. (2013). The role of fingers in number processing in young children. Frontiers in Psychology, 4, 488. https://doi.org/10.3389/fpsyg.2013.00488
Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105(2), 395–438. https://doi.org/10.1016/j.cognition.2006.10.005
Liu-Shuang, J., Norcia, A. M., & Rossion, B. (2014). An objective index of individual face discrimination in the right occipito-temporal cortex by means of fast periodic oddball stimulation. Neuropsychologia, 52, 57–72. https://doi.org/10.1016/j.neuropsychologia.2013.10.022
Lochy, A., & Schiltz, C. (2019). Lateralized neural responses to letters and digits in first graders. Child Development, 90, 1866–1874. https://doi.org/10.1111/cdev.13337
Marinova, M., Georges, C., Guillaume, M., Reynvoet, B., Schiltz, C., & Van Rinsveld, A. (2021). Automatic integration of numerical formats examined with frequency-tagged EEG. Scientific Reports, 11(1), 21405. https://doi.org/10.1038/s41598-021-00738-0
Marlair, C., Lochy, A., Buyle, M., Schiltz, C., & Crollen, V. (2021). Canonical representations of fingers and dots trigger an automatic activation of number semantics: An EEG study on 10-year-old children. Neuropsychologia, 157, 107874. https://doi.org/10.1016/j.neuropsychologia.2021.107874
Miller, K. F., Smith, C. M., Zhu, J., & Zhang, H. (1995). Preschool origins of cross-National Differences in mathematical competence: The role of number-naming systems. Psychological Science, 6(1), 56–60. https://doi.org/10.1111/j.1467-9280.1995.tb00305.x
Muir, L. J., & Richardson, I. E. G. (2005). Perception of sign language and its application to visual communications for deaf people. Journal of Deaf Studies and Deaf Education, 10(4), 390–401. https://doi.org/10.1093/deafed/eni037
Newman, A. J., Supalla, T., Fernandez, N., Newport, E. L., & Bavelier, D. (2015). Neural systems supporting linguistic structure, linguistic experience, and symbolic communication in sign language and gesture. Proceedings of the National Academy of Sciences of the United States of America, 112(37), 11684–11689. https://doi.org/10.1073/pnas.1510527112
Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–208. https://doi.org/10.1146/annurev.neuro.051508.135550
Noël, M. P. (2005). Finger gnosia: A predictor of numerical abilities in children? Child Neuropsychology, 11(5), 413–430. https://doi.org/10.1080/09297040590951550
Overmann, K. A. (2018). Constructing a concept of number. Journal of Numerical Cognition, 4(2), 464–493.
Park, J., Chiang, C., Brannon, E. M., & Woldorff, M. G. (2014). Experience-dependent hemispheric specialization of letters and numbers is revealed in early visual processing. Journal of Cognitive Neuroscience, 26(10), 2239–2249. https://doi.org/10.1162/jocn_a_00621
Park, J., van den Berg, B., Chiang, C., Woldorff, M. G., & Brannon, E. M. (2018). Developmental trajectory of neural specialization for letter and number visual processing. Developmental Science, 21(3), e12578. https://doi.org/10.1111/desc.12578
Pinel, P., Dehaene, S., Rivière, D., & LeBihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage, 14(5), 1013–1026. https://doi.org/10.1006/nimg.2001.0913
Proverbio, A. M., & Carminati, M. (2019). Finger-counting observation interferes with number processing. Neuropsychologia, 131, 275–284. https://doi.org/10.1016/j.neuropsychologia.2019.06.001
Retter, T. L., & Rossion, B. (2016). Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream. Neuropsychologia, 91, 9–28. https://doi.org/10.1016/j.neuropsychologia.2016.07.028
Retter, T. L., Webster, M. A., & Jiang, F. (2019). Directional visual motion is represented in the auditory and association cortices of early deaf individuals. Journal of Cognitive Neuroscience, 31(8), 1126–1140.
Reynvoet, B., & Sasanguie, D. (2016). The symbol grounding problem revisited: A thorough evaluation of the ANS mapping account and the proposal of an alternative account based on symbol-symbol associations. Frontiers in Psychology, 7, 1581. https://doi.org/10.3389/fpsyg.2016.01581
Rossion, B. (2014). Understanding individual face discrimination by means of fast periodic visual stimulation. Experimental Brain Research, 232(6), 1599–1621. https://doi.org/10.1007/s00221-014-3934-9
Sandler, W. (2009). Symbiotic symbolization by hand and mouth in sign language. Semiotica, 2009(174), 241–275. https://doi.org/10.1515/semi.2009.035
Scott, G. D., Karns, C. M., Dow, M. W., Stevens, C., & Neville, H. J. (2014). Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex. Frontiers in Human Neuroscience, 8, 177. https://doi.org/10.3389/fnhum.2014.00177
Soylu, F., Lester, F. K., Jr., & Newman, S. D. (2018). You can count on your fingers: The role of fingers in early mathematical development. Journal of Numerical Cognition, 4(1), 107–135. https://doi.org/10.5964/jnc.v4i1.85
Soylu, F., Rivera, B., Anchan, M., & Shannon, N. (2019). ERP differences in processing canonical and noncanonical finger-numeral configurations. Neuroscience Letters, 705, 74–79. https://doi.org/10.1016/j.neulet.2019.04.032
Stroh, A. L., Grin, K., Rösler, F., Bottari, D., Ossandón, J., Rossion, B., & Röder, B. (2022). Developmental experiences alter the temporal processing characteristics of the visual cortex: Evidence from deaf and hearing native signers. European Journal of Neuroscience, 55(6), 1629–1644.
Vachon, P., Voss, P., Lassonde, M., Leroux, J. M., Mensour, B., Beaudoin, G., … Lepore, F. (2013). Reorganization of the auditory, visual and multimodal areas in early deaf individuals. Neuroscience, 245, 50–60. https://doi.org/10.1016/j.neuroscience.2013.04.004
van den Berg, F. C. G., de Weerd, P., & Jonkman, L. M. (2020). Number-related brain potentials are differentially affected by mapping novel symbols on small versus large quantities in a number learning task. Journal of Cognitive Neuroscience, 32(7), 1263–1275. https://doi.org/10.1162/jocn_a_01546
van den Berg, F. C. G., de Weerd, P., & Jonkman, L. M. (2021). Electrophysiological evidence for internalized representations of canonical finger-number gestures and their facilitating effects on adults' math verification performance. Scientific Reports, 11(1), 11776. https://doi.org/10.1038/s41598-021-91303-2
Van den Berg, F. C. G., De Weerd, P., & Jonkman, L. M. (2022). Canonical finger-numeral configurations facilitate the processing of Arabic numerals in adults: An event-related potential study. Neuropsychologia, 170, 108214. https://doi.org/10.1016/j.neuropsychologia.2022.108214
Wynn, K. (1998). Psychological foundations of number: Numerical competence in human infants. Trends in Cognitive Sciences, 2(8), 296–303. https://doi.org/10.1016/s1364-6613(98)01203-0