[en] In this paper, a discriminator-free adversarial-based Unsupervised Domain Adaptation (UDA) for Multi-Label Image Classification (MLIC) referred to as DDA-MLIC is proposed. Recently, some attempts have been made for introducing adversarial-based UDA methods in the context of MLIC. However, these methods which rely on an additional discriminator subnet present one major shortcoming. The learning of domain-invariant features may harm their task-specific discriminative power, since the classification and discrimination tasks are decoupled.
Herein, we propose to overcome this issue by introducing a novel adversarial critic that is directly deduced from the task-specific classifier. Specifically, a two-component Gaussian Mixture Model (GMM) is fitted on the source and target predictions in order to distinguish between two clusters. This allows extracting a Gaussian distribution for each component. The resulting Gaussian distributions are then used for formulating an adversarial loss based on a Fr\'echet distance. The proposed method is evaluated on several multi-label image datasets covering three different types of domain shift. The obtained results demonstrate that DDA-MLIC outperforms existing state-of-the-art methods in terms of precision while requiring a lower number of parameters. The code is publicly available at github.com/cvi2snt/DDA-MLIC.
Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > CVI² - Computer Vision Imaging & Machine Intelligence
Disciplines :
Computer science
Author, co-author :
SINGH, Inder Pal ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
GHORBEL, Enjie ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > CVI2 > Team Djamila AOUADA ; University of Manouba, Tunisia > High Institute of Multimedia Arts (ISAMM)
KACEM, Anis ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
RATHINAM, Arunkumar ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
AOUADA, Djamila ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
External co-authors :
yes
Language :
English
Title :
Discriminator-free Unsupervised Domain Adaptation for Multi-label Image Classification
Publication date :
08 January 2024
Event name :
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)