Article (Périodiques scientifiques)
Equation-based and data-driven modeling strategies for industrial coating processes
PAPAVASILEIOU, Paris; KORONAKI, Eleni; POZZETTI, Gabriele et al.
2023In Computers in Industry, 149, p. 103938
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Paris_Paper2_AAM.pdf
Postprint Auteur (10.98 MB) Licence Creative Commons - Attribution, Pas d'Utilisation Commerciale, Pas de Modification
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
CFD modeling; Chemical Vapor Deposition; Coating; Industrial application; Production data; Supervised learning; Chemical vapour deposition; Computational fluid dynamics modeling; Data-driven model; Dynamic learning; Equation based; Fluid machines; Industrial coating process; Machine-learning; Modelling strategies; Computer Science (all); Engineering (all); General Engineering; General Computer Science
Résumé :
[en] Computational Fluid Dynamics (CFD) and Machine Learning (ML) approaches are implemented and compared in an industrial Chemical Vapor Deposition process for the production of cutting tools. In this work, the aim is to analyze the pros and cons of each method and propose a blend of the two approaches that is suitable in industrial applications, where the process is too complicated to address with first-principles models and the data do not allow the implementation of data-hungry methods. Both approaches accurately predict the coating thickness (Mean Absolute Percentage Error (MAPE) of 6.0% and 4.4% for CFD and ML respectively for the test case reactor). CFD, despite its increased computational cost, both in terms of developing and also calibrating for the application at hand, provides meaningful insight and illuminates the process. On the other hand, ML can provide predictions in a time-efficient manner, and is thus appropriate for inline and concurrent predictions. However, it is limited by the available data and has low extrapolation ability. Equation-based and data-driven methods are combined by exploiting a handful of CFD results for efficient interpolation in a reduced space defined by the principal components of the dataset, by implementing Gappy POD. This allows for the accurate reconstruction of the full state-space with limited data.
Disciplines :
Ingénierie chimique
Sciences informatiques
Auteur, co-auteur :
PAPAVASILEIOU, Paris  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; School of Chemical Engineering, National Technical University of Athens, Greece
KORONAKI, Eleni  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; School of Chemical Engineering, National Technical University of Athens, Greece
POZZETTI, Gabriele;  CERATIZIT Luxembourg S.à r.l, Mamer, Luxembourg
Kathrein, Martin;  CERATIZIT Luxembourg S.à r.l., Mamer, Luxembourg
Czettl, Christoph;  CERATIZIT Austria GmbH, Reutte, Austria
Boudouvis, Andreas G.;  School of Chemical Engineering, National Technical University of Athens, Greece
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Equation-based and data-driven modeling strategies for industrial coating processes
Date de publication/diffusion :
août 2023
Titre du périodique :
Computers in Industry
ISSN :
0166-3615
eISSN :
1872-6194
Maison d'édition :
Elsevier B.V.
Volume/Tome :
149
Pagination :
103938
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Physics and Materials Science
Intitulé du projet de recherche :
U-AGR-7130 - BRIDGES/21/16758846/OptiSimCVD (01/06/2022 - 31/05/2026) - BORDAS Stéphane
Organisme subsidiant :
H2020 Marie Skłodowska-Curie Actions
European Commission
Université du Luxembourg
Fonds National de la Recherche Luxembourg
Horizon 2020
Horizon 2020 Framework Programme
Subventionnement (détails) :
S.P.A.B acknowledges financial support by the Fonds National de la Recherche (FNR) Luxembourg (BRIDGE grant OptiSimCVD) . E.D.K. is supported by the EU under a MSCA Individual Fellowship (Grant agreement: 890676 ). S.P.A.B received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 811099 TWINNING Project DRIVEN for the University of Luxembourg.S.P.A.B acknowledges financial support by the Fonds National de la Recherche (FNR) Luxembourg (BRIDGE grant OptiSimCVD). E.D.K. is supported by the EU under a MSCA Individual Fellowship (Grant agreement: 890676). S.P.A.B received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 811099 TWINNING Project DRIVEN for the University of Luxembourg.
Disponible sur ORBilu :
depuis le 22 octobre 2023

Statistiques


Nombre de vues
226 (dont 24 Unilu)
Nombre de téléchargements
40 (dont 1 Unilu)

citations Scopus®
 
12
citations Scopus®
sans auto-citations
7
OpenCitations
 
0
citations OpenAlex
 
12
citations WoS
 
12

Bibliographie


Publications similaires



Contacter ORBilu