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Abstract

Computational Fluid Dynamics (CFD) and Machine Learning (ML) ap-
proaches are implemented and compared in an industrial Chemical Vapor
Deposition process for the production of cutting tools. In this work, the
aim is to analyze the pros and cons of each method and propose a blend of
the two approaches that is suitable in industrial applications, where the pro-
cess is too complicated to address with first-principles models and the data
do not allow the implementation of data-hungry methods. Both approaches
accurately predict the coating thickness (Mean Absolute Percentage Error
(MAPE) of 6.0% and 4.4% for CFD and ML respectively for the test case

reactor). CFD, despite its increased computational cost, both in terms of de-
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veloping and also calibrating for the application at hand, provides meaningful
insight and illuminates the process. On the other hand, ML can provide pre-
dictions in a time-efficient manner, and is thus appropriate for inline and
concurrent predictions. However, it is limited by the available data and has
low extrapolation ability. Equation-based and data-driven methods are com-
bined by exploiting a handful of CFD results for efficient interpolation in a
reduced space defined by the principal components of the dataset, by imple-
menting Gappy POD. This allows for the accurate reconstruction of the full
state-space with limited data.

Keywords: Chemical Vapor Deposition, Coating, supervised learning, CFD

modeling, industrial application, production data
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1. Introduction

Chemical Vapor Deposition (CVD) processes are popular in a wide range
of applications, including microelectronics (Creighton and Parmeter| [1993),
sensors ((Ozaydin-Ince et al. 2011) and wear resistant coatings (Kathrein
et al., 2003)). The coating process involves the nonlinear interplay of physical
mechanisms, such as diffusion and convection, with a plethora of homoge-
neous and heterogeneous chemical reactions. The competition between the
different mechanisms determines the process outcome and the product qual-
ity. It is therefore a fine example of a process that is too complicated to
study with first-principles models, such as Computational Fluid Dynamics

(CFD) and where the data is often not enough to implement sophisticated
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data-driven strategies. Taking all of the above into consideration, the ob-
jective of this work is to investigate the potential benefit of simplified CFD
process models, accompanied by purely data-driven predictions using Ma-
chine Learning (ML) approaches. Both methods are driven by the size and
type of the available production data. In the CFD case, the data are used
for calibration and validation and in the ML case for regression.
Computational Fluid Dynamics is a valuable tool for studying deposi-
tion processes (Kleijn and Hoogendoorn| [1991; Kleijn et al., [2007; |(Cheimar-
ios et al., 2012; |(Cho and Mountziaris|, 2013}, [Psarellis et al., 2018; Koronaki
et al., [2019; [Papavasileiou et al., 2022), since it allows the investigation of
the flow field inside the reactor, as well as the main physical and chemical
pathways that lead to the deposition of thin film coatings. Nevertheless,
modeling industrial-scale deposition applications using CFD presents several
challenges: Firstly, dealing with the complexity of the process, which often
has several unknowns and secondly, the large scale of real applications.
Specifically, the actual chemical reactions that lead to deposition, includ-
ing their rates, are often unknown. Therefore, it is not possible to predict
the effect of the interplay between transport phenomena and chemical kinet-
ics on the deposition rate, necessitating the development of a kinetic model
(Topka et al., |2022)). Even when a chemical reaction scheme is available,
some of its parameters may need to be fitted for the specific application.
This parameter fitting involves an increased computational cost, as it usu-
ally requires numerous simulations (Gakis et al.| [2015; Koronaki et al., [2016;
Gkinis et al) 2017, 2019). Nevertheless, CFD has been applied to several
CVD applications, shedding light on previously “opaque” processes (Fotiadis
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et al., 1990; [Liu and Xiao, 2015} |Aviziotis et al., 2017) while also allowing

to predict their outcomes (Endo et al.| [2004). Although attempts have been

made towards increasing the efficiency of CFD models by implementing re-

duced order modeling methods (Gkinis et al., 2019} |Spencer et al., 2021),

developing an efficient and accurate model in an industrial setting remains a
challenging and time-consuming task.

In the era of Industry 4.0, digitalization has become one of the main

drivers of innovation (Kagermann, [2015) and production data are becoming

more and more available. The industry is trying to exploit this data, seek-
ing improvement in several domains, including: maintenance management
(Saxena and Saad, 2007} |Susto et al.,|2015; [Wu et al [2019; |Dalzochio et al.,
quality management (Kim et al., 2012} 2018} |Carvajal Soto et al., 2019;
Igbal et al, 2019, Wang et al., [2022), production planning and control
et al, 2018; [Tulsyan et al, [2018; Ma et al [2019; [Agarwal et al., [2020; [Deng
2022)), supply chain management (Du and Jiang| [2019), process out-
come predictions (Cai et al, 2020} |Azadi et al., [2022; Dai et al., [2022; Malley|

et all, 2022) and process optimization (He et all, 2021} |Galvis et all, [2022).

Furthermore, digital twins (Boyes and Watson, [2022) are becoming increas-

ingly popular in the process industry (Hirkamp et al., [2020; [Rasheed et al.|
2020; Perno et all, 2022)), as well as in other, diverse applications
et al., 2021} Kalaboukas et al., 2023). Although the application of sophisti-
cated methods such as Deep Neural Networks (DNNs) (Blakseth et al., |2022;
Deshpande et al., 2022)), Physics Informed Neural Networks (PINNs) (Raissi
et all, and manifold learning (Koronaki et all 2023) has been demon-

strated on controlled small scale problems, several challenges still remain
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when incorporating ML in everyday industrial practice. Addressing these
challenges is one of the main objectives of this work.

The industrial application in this work is the coating of cutting tools with
a-Al;O3 for increased wear resistance. Concerning CFD, the goal is to pro-
pose the best possible simplified model, based on the available data which are
necessary for verification and validation. This leads to a 2D, time-dependent
CFEFD model, presented in detail in previous work (Papavasileiou et al., 2022).
The proposed model implements representative boundary conditions and em-
ploys a simple reaction scheme for the a-Al;O3 deposition with the goal of
reducing the computational cost.

Concerning ML, the first task is to pre-treat the available data, upon
which the choice of method depends on. Addressing mixed types of data
(categorical and numerical) is a common challenge in many applications, not
restricted to deposition processes. Several regression models are trained to
predict the a-Al;O3 coating thickness using characteristics of the reactor
set-up and process conditions as inputs. In this work, the focus lies more on
tree-based methods (James et al., [2021b|) which are the best-performing for
the given data-set.

The two approaches are initially compared in their ability to accurately
and efficiently predict the alumina coating thickness of the cutting tool in-
serts. Specifically, the advantages and disadvantages of each strategy are as-
sessed in terms of accuracy, interpretability, extrapolation ability and com-
putational cost. As a final step, the two approaches are merged through
the implementation of the Gappy Proper Orthogonal Decomposition (Gappy
POD) method (Everson and Sirovich| |1995; Willcox, 2006). The latter, is
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popular for optimal sensor placement, and here it adapted to propose a suffi-
cient number of known data from which we can infer quantities that are not
measurable.

The manuscript is structured as follows: A concise overview of the process
and the available production data is given in Section [2 The implemented
methods (CFD, ML and Gappy POD) are presented in Sections and . The
results of each method are analyzed and compared in Section [5], followed by

the conclusions in Section [6l

2. Process description

A two-step coating process takes place inside the studied industrial-scale,
commercial CVD reactor (Sucotec SCT600TH). First, a Ti(C,N) base layer
of about 9 pm is grown on the cemented carbide cutting inserts, such as the
ones shown in Fig. [Ta] Subsequently, an alumina layer is deposited under
a AlCl3—COy—HCIl-Hy—HsS chemical system. The temperature and pressure
for the alumina coating step are T=1005°C and p=80 mbar, respectively
(Hochauer et al., [2012). The alumina coating deposition step of the process
takes approximately 3 hours.

The CVD reactor consists of 40-50 perforated disks, stacked one on top
of the other, whereon the inserts are placed. In Fig. a schematic of three
such disks is shown for clarity. The mixture of gas reactants, enters the
reactor via perforations on a rotating cylindrical tube, placed in the center
of the structure of the stacked disks. There are two antipodal perforations for
each disk level. There is a 60° angle difference between the axis connecting

the inlet holes for each disk level. The rotational motion of the inlet tube
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(rotating with a rotational speed of 2 RPM) causes the process to have an
inherent periodic nature. The interior geometry of the reactor changes from
production run to production run, since the geometry of the inserts (and the

disks on which they are placed), changes based on production requirements.

(a) (b)

Figure 1: (a) Indicative geometries of the coated cutting tools. (b) A 3D representation
of a 3-disk part of the reactor. The inlet perforations on the rotating inlet tube are shown

in red. The outlet perforations for each disk are shown in blue.

The main goal of the process is to achieve uniform coating thickness,
since this uniformity also leads to uniform product longevity
[Etsion| 2017). Ideally, coating thickness uniformity would be achieved across
all production runs, reactors, and production sites. However, this is not
always the case. For this reason, a way of predicting the coating thickness of
the inserts given the reactor set-up is needed. Furthermore, coming up with
a systematic way of assessing the factors that influence the coating thickness

uniformity is also highly important.
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2.1. Available data

For the Ti(C,N)/a-Al,O3 multi-layer coating, the thickness measure-
ments are performed via the Calotest method. A small spherical cavity
is ground on the coated inserts using a rotating ball of known geometry,
providing a tapered cross-section of the film when viewed under an optical
microscope (Lepicka and Gradzka-Dahlke, |2019). This way, the thickness of
both the Ti(C,N) and a-Al;O3 coating layers can be calculated. Measure-
ments are usually taken for 3 positions on 5 disks of interest. Therefore, 15
thickness measurements are available for each production run. A 2D rep-
resentation of the reactor indicating the points where thickness is typically
measured is shown in Fig. These measurements allow for not only for
the calibration and validation of the CFD model, but also for several ML
approaches.

Apart from coating thickness measurements, the dataset also contains
several features concerning the process and the reactor setup, which will
serve as inputs to the machine-learning model. The production “recipe” used
for the coating is the available feature providing information regarding the
process. Setup-wise, there is a plethora of available features for each disk of

the reactor, including;:

1. The position of each disk inside the reactor.

2. The number of inserts placed on each disk.

3. The type of insert placed on each disk. Each type of insert has different
geometrical characteristics.

4. The type of disk used. The type of disk used is always relative to the
type of insert placed on top of it.



0
o
o
0
0
0
o
0
o
0
Gl

0 0
08 02 02 02 [
0

0
g
i

03 0f

00000
o
o
o

0
i
nﬂ

0

0

0

0

0

0

0

0

00000000040
SR ===

00000000 0a
== —r=—}

0000000004
SR ===
0000000000
SR ===
jsl/julifulifu]/ju]i]
=] =]

—= o
—oo oo

—oo oo

Figure 2: Positions with available a-Al,O3 thickness values from the production data for
our test case. In general, across different production runs, the R position (the one closest
to the reactor outlet) is the one with the highest amount of data. For this reason, the ML

models are trained to make predictions for inserts placed in this position.
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5. The surface area of the inserts placed on the disk.

These features allow for the creation of more features, such as the total
surface area and the standard deviation of the surface area of the inserts
that are coated inside the reactor. Another feature that can be created is the
difference between the nominal surface area of the production “recipe” and
the actual insert surface area inside the reactor. Furthermore, for each disk,
we can exploit the information available for its neighboring disks.

This way, we end up with several features, of which thirteen are used as
inputs after being pre-processed. These features are summarized in Table [I]
Considering the coating thickness measurements as outputs, we can train
several supervised learning models to make coating thickness predictions per
disk. In this context, during training, a labeled set of inputs is provided and
specifically here, the inputs are the aforementioned features and the labels

are the a-Al;O3 coating thickness measurements.

3. Computational ingredients

3.1. ML methods

For the data-driven approach to the problem, the implementation of an
assortment of machine learning methods for the prediction of coating thick-
ness inside the reactor is investigated. All methods implemented fall into
supervised learning methods.

In supervised learning, each one of the input variables z; is associated with
a response (or output) y; (James et al. [2021al). The goal of the ML strategy
is to train a model able to relate the input variables x; to the output g;. This

way, future observations can be predicted and the relationship between the

10



Table 1: Summary of the features included in the training of the regression models.

Feature Type Pre-processing

Number of inserts on disk Numerical (integer) standardization
Surface area of inserts on disk ~ Numerical (float)  standardization
Disk position Numerical (integer) standardization

Total surface area of inserts _ o
Numerical (float)  standardization

inside the reactor
Surface area standard deviation =~ Numerical (float)  standardization
|Nominal “recipe” surface area

Numerical (float)  standardization
- actual surface area|

Production “recipe” Categorical binary encoding
Insert geometry Categorical binary encoding

Disk geometry Categorical binary encoding

Insert geometry — disk above Categorical binary encoding
Insert geometry — disk below Categorical binary encoding
Disk geometry — disk above Categorical binary encoding
Disk geometry — disk below Categorical binary encoding

17a inputs and the output can be interpreted. Here, the goal is to predict the
s a-AlyOj coating thickness (a continuous target variable) from several inputs,

176 using a regression method. The specific methods include but are not limited

177 to:
178 e Linear methods, such as linear, lasso or ridge regression.
179 e Non-linear methods, such as polynomial regression.

11
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e Tree-based methods, such as regression trees and their ensemble ver-
sions: random forests, gradient boosted regression trees and extreme

gradient boosted regression trees.
e Artificial neural networks.

During the early phases of this research, several techniques were utilized,
including linear, lasso, and ridge regression, as well as support vector ma-
chines and Gaussian process regression. Preliminary findings indicated that
tree-based methods outperformed the other techniques, and as a result, the
focus of this study is on tree-based methods.

The models’ accuracy will be evaluated via two different metrics, namely
the mean absolute error (MAE) and the mean absolute percentage error
(MAPE). When the model is trained or tested on N observations and for
each observation 7 the prediction is g; while the actual value is y;, MAE and

MAPE can be written as follows:

N
1 .
MAE =+ > g — wil (1)
=1
1 < |9 — il
MAPE = — ICANNCAI] 2
D @

Two different computational costs pertain to each ML model, the training
time (t4ain) and the prediction time (¢,.q4) of the model. Both of these costs

are expressed in CPU time.

3.1.1. Tree-based methods
Tree-based methods work by partitioning the space of the inputs X into

a set of rectangles. Afterwards, a simple model (e.g. a constant) is fit in each

12
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partition. The process starts by splitting the entire input space in two based
on a variable of the input space and its value. The optimal variable and split
point are chosen in order to achieve an accurate fit. Then, either or both
of the resulting regions are split again in two, once again using the optimal
input and split point. This procedure continues until a stopping criterion
has been met. The occurring binary splits allow for model interpretability
since the entire sample space can be described by a single tree. Tree-based
methods can be used for both regression and classification purposes (Hastie
et al., 2009a).

The prediction accuracy of a single tree is often not as high as that of other
methods. Furthermore, a small change in the data can lead to an entirely
different tree layout. These two issues and especially the predictive perfor-
mance of the trees can be rectified by combining multiple trees through the
implementation of ensemble methods such as bagging and boosting (James
et al., | 2021b)).

The concept behind ensemble methods is to build a prediction model
by combining a number of simpler base methods, in two steps: First, a
number of base learners must be created from the available data. The second
step involves the combination of these learners into one ensemble predictor.
The most common ensemble tree-based methods are random forests, bagged
trees and gradient boosted trees. These methods, however, have some key
differences between them.

Random forests and bagged trees, discussed here, operate similarly. They
both build B regression trees and each tree is trained using bootstrap-

sampled (i.e. sample a particular data-point and then reintroduce it to the

13
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dataset), versions of the original dataset. Bagging regression methods pro-
vide a prediction by averaging the outputs of the B trees that they consist
of. If y;  is the prediction of each grown tree, then the final prediction of the

bagging method g; 14 is given by:

i I
Uiveg = 7 bZ; Yib (3)
Random forests and bagged trees differ only in the amount of input fea-
tures Ninpue that are considered when building each tree. In bagged trees,
all available features are considered. On the contrary, in random forests, a
random subset of p input features is considered. This serves the purpose of
de-correlating the individual trees, since the trees are not always built by
selecting the global optimal features, but by selecting the optimal feature
from a randomly sampled subset of the input features (James et al., 2021b).
Gradient boosting and extreme gradient boosting are boosting methods.
In the case of boosting methods, contrary to bagging methods, the B base
trees are created sequentially. First, the first tree of the ensemble is created.
Afterwards, each created tree is fitted to the difference between the value
predicted by the previous tree and the real output. This way, each tree
improves the shortcomings of the previous one. There is no averaging of the
result of the B trees in this case (Hastie et al., 2009b).
Therefore, after building the b tree which outputs v;, and is trained on
the residual of the output of the ensemble after the previous tree has been

built, the output of the ensemble f,(z) can be written as:

14
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fo@) = foa(@) + A=Y pl(@ € Rjp) (4)

j=1
where [ is the indicator function, and A is the learning rate of the boosting
procedure. A serves the purpose of scaling the contribution of the output of
each tree to the final prediction of the ensemble.

The result of the model is the output of the ensemble after the final tree
has been built. Boosting methods are more prone to overfitting for large
values of B than bagging methods. For this reason, B needs to be carefully

selected through cross-validation.

3.1.2. Challenges

Applying data-driven methods to a real-world dataset presents several
challenges. First and foremost, the dataset needs to be “cleaned”. Given that
the production dataset is derived from different production sites, different
reactors, and different people, it is bound to contain some errors. These
errors must be identified and corrected before any type of analysis. Then,
there is the question of the format of the data. Even when the data is neatly
organized in an SQL database, it still needs to be extracted and formatted
(using the pandas python library (McKinney} 2010), for example) so that
it can be used to train models in a python framework. Afterwards comes
the question of data type. In this particular application, there are both
numeric and alphanumeric features (features that contain names instead of
values). Since several of the implemented methods are not compatible with
alphanumeric (categorical) features, those features need to be encoded in a

way (i.e. binary encoding, one-hot encoding (Potdar et al.,[2017)) that allows

15
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them to be used in our models. Finally, once the data is ready, the task is
to find the best performing model and to determine the hyperparameters
that influence performance. Therefore, a hyperparameter optimization step
must also be included. By following this step-by-step approach, we can
establish a data pipeline specific to our data that allows us to overcome
all the aforementioned challenges. This however requires experience, input

from the process experts, along with a clear understanding of the data.

3.2. CFD modeling: Implementation & challenges

For this specific application, a digital “replica” of the process would have
to be a 3D, time-dependent full reactor (40-50 disks) model which would
include a complex reaction scheme. A complex reaction scheme, would lead
to more degrees of freedom and an increased number of kinetic parameters
that would need to be fitted. Apart from this, given the rotation of the
inlet tube (and therefore the fact that the problem is not axisymmetric) a
moving mesh would also need to be implemented. This would translate into
a computationally intractable task. If we consider that the reactor interior
geometry changes on a day-to-day basis, since the geometries of inserts and
the disks on which they are placed change based on production quotas, a
computationally expensive model is not a suitable method to study this in-
dustrial application. For this reason, aiming to drive the computational cost

down, the problem was approached as follows:

e The problem is modeled in 2D.

e The boundary conditions for both the inlet and the outlet are selected

in a way that is representative of their 3D characteristics.

16
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e The model takes into account only 7-disk parts of the reactor in a divide

and conquer approach.

e A simpler reaction scheme that still leads to accurate results is used.

To efficiently tackle the challenges of the process, a 2D, time-dependent
model that accounts for the transport of mass, momentum, and species inside
the reactor is proposed. The COMSOL Multiphysics® software was used for
the CFD modeling. The interested reader can seek detailed information
in the recent work of Papavasileiou et al| (2022); here the key points are
summarized for completeness.

A reaction scheme consisting of a homogeneous reaction in the gas phase
and a heterogeneous reaction for the deposition of a-Al,O3 is part of the
model. The following assumptions are made: a) laminar and incompressible
flow, b) constant temperature of in the entire reactor domain, c) ideal gas
phase. The CFD model accounts for 7-disk “building blocks” of the reactor,
in order to keep the computational cost low. To account for the rotation of
the inlet tube, pulse velocity boundary conditions are applied at the inlets.
To represent the placement of the holes on the inlet tube in the 2D com-
putational geometry, a phase difference is included between the boundary
conditions of each disk. A similar approach is taken for the outlet perfora-
tions. Since they are not aligned, pressure boundary conditions are applied
at every other disk (1st open, 2nd closed and so forth). In order to model
the deposition of a-Al;O3 under the AlCl3—CO,-HCI-Hy—H5S chemical sys-
tem, we implement a simple reaction scheme based on the work of Schierling

et al. (1999). Implementing this simpler scheme results in a lower computa-

17
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tional cost. The simulations account for two full rotations (or periods) of the

feeding tube.

4. Combining equation-based and data-driven approaches using

Gappy POD

In this work, the Gappy POD method is used for the reconstruction of sev-
eral 7-disk reactor snapshots acquired using the aforementioned CFD model
using limited - or “gappy” data. Gappy POD was first introduced by |[Everson
and Sirovich| (1995) and then implemented, among others, to a CFD airfoil
application by [Willcox| (2006) and for non-linear fracture mechanics modeling
(Kerfriden et al., [2013)). Optimal sensor placement is another problem that
can be solved using the Gappy POD method, as indicated in the works of
Willcox| (2006) and Jo et al.| (2019). This is achieved by finding the optimal
way of filling the “gaps” in the data, or in other words, selecting the sensor
positions that give the most information possible.

A concise overview of the method, along with the procedure followed for
the acquisition of data and the metrics used for the evaluation of the method,

are presented in the following paragraphs.

4.1. Overview

In this section, the Gappy POD method is summarized for completeness.
Let’s consider a dataset X of M vectors (represented as d-dimensional real
vectors zy, ..., 2y ). A POD basis, ® € RV*M of X is computed, such that

X can be approximated as a linear combination of p vectors:

18
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p
X=> J® (5)
j=1
or in matrix-vector format:

X=%c (6)

The size of the truncated POD basis ® is selected based on the error

between the actual vector X and the reconstructed approximation X :

reconstruction error = || X — X|| (7)

Another factor that can be taken into account when selecting the size of
the truncated basis is the total energy retained by the selected number of
modes. For each basis vector j, the relative importance (E;) is given by:

Aj
Ej - D )\Z (8)

i=1
and therefore, the total energy retained for the k retained modes is given by:

k
Etotal - Z Ej (9)
j=1

Let us consider a vector X’ that is spanned by the same basis ® and that
only m values of this vector are known, such that the partial vector X'

partial
can be defined:

/
Xpartial

=m- X' meR™N (10)

The goal is to find coefficients ¢/, such that an approximation X' of the

vector X' can be defined as :
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X =x¢ (11)

then:

X[,)artial ~m- X" (12>
Finding the values of ¢ that satisfy the above leads to an optimization
problem, which results in the solution of the linear system:

M-d=(m-®) X

partial

(13)

with M = (m - ®) - (m - ®)

4.2. CFD data sampling

Snapshots, i.e. vectors containing information regarding the system’s
state at a specific time, of 12 different 7-disk reactor parts will be used for
the implementation of the Gappy POD method. For each reactor part, there
31 available time-instances (each one with 1 second time difference from the
previous). This way, the full dataset consists of 372 vectors.

At each time-instance, 4 quantities of interest are sampled along the lines
connecting inlet-outlet at each disk level. The points of these lines are then
interpolated at 250 specific query points using linear interpolation. In this
manner, 250 evenly spaced points along each line are obtained. An example
of the lines along which the quantities of interest are sampled is demonstrated
in Fig. 3]

The quantities of interest at each point are:

1. The velocity magnitude (U).
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Figure 3: In blue: The seven lines along which the 4 quantities of interest
(U,p,Caicis, Co,0) are sampled. In orange: The disk with available thickness measure-
ments. The thickness measurements, as well as the a-Al;O3 deposition rates at the inserts

of this disk, are also included for our implementation of Gappy POD.

381 2. The pressure (p).
382 3. The concentration of the precursor AICl3 (Caicrs)-

383 4. The concentration of water (Cp,0).

384 Furthermore, the deposition rates as predicted by the CFD model along
s with the available thickness data for 3 positions (Ry, Ri/2, R) for each 7-disk
;86 reactor part, are included in each snapshot. An overview of the resulting
se7  dataset after sampling and organizing the vectors is presented in Fig. [4]

388 It is worth noting that a plethora of input parameters influences the
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391

392
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394

final product, the most important of which include the configuration of the
reactor’s interior geometry and the production "recipe". The latter includes
all the steps and chemical species involved in the production of a single
coating layer. In this work, to make the simulations tractable, the focus lies
on a single "recipe" for a single product and various geometries, without loss

of generality.

U b ool T i oo il Uy ooo i
U U U U U U U
U, U, U, U, U, U, U, G, U,
Uy Uy Uy Uy Uy Uy Us Uy Uy

DR, DR, DR,
DR, DRjyeeeDRyy
DR; DRy D.Ry

Reactor 1

DR, DR, DR,
DR, DRy e e DRy
DRy DRy D.Ry

Reactor 2

DR, DR, DR,
DR;, DRje e e DRyy
DR; DRy D.Ry

Reactor 12

Figure 4: The final matrix considered for the Gappy POD method. A total of 31 time-
instances for 12 different reactor geometries have been sampled. These contain all 4
quantities of interest (velocity magnitude, pressure, precursor concentration (Cp), water
concentration (C3) along with the calculated deposition rates (D.R) and the coating thick-
ness measurements (h) taken from the production data. In our case, T = 31 (number of
time-instances per reactor) and N = 1750 (total number of points: 7 lines containing 250

points each).
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4.3. Performance metrics

The performance of the Gappy POD approach will be evaluated using the
Root Mean Squared Error (RMSE) between: a) the Gappy POD reconstruc-
tion and the POD reconstruction, b) the Gappy POD reconstruction and the
snapshots of the reactor given by the CFD model. The RMSE between two

values (y; and y;) for N observations can be written as follows:

N
1
MSE = | = > (i — :)? 14
R‘ S Ni:1(y7f yl) ()

4.4. Mask selection

The effectiveness of Gappy POD depends on the condition number of
matrix M, which is defined in Eq. . The matrix M is created from the
inner products of the "gappy" POD vectors, which are the elements of the
original POD vectors corresponding to the known elements of X’. Since
these vectors are no longer orthogonal, the matrix M is fully populated. For
orthogonality to be preserved, the known element positions and non-zero
elements of M must be appropriately arranged. Additionally, the diagonal
entries of M must not be too small, indicating that the POD basis element
at that point should not be small. The condition number of the matrix
M reflects these requirements, with a smaller condition number indicating
greater satisfaction of these conditions. This analysis is detailed in (Willcox,
2006)), in the context of optimal sensor placement, and in (Alonso et al.
2004alb)), which consider the angle between the measurement subspace and
the low dimensional space that spans the data.

To determine the known values of the vector X’ in a more systematic
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manner, a greedy algorithm similar to the one proposed by |Willcox] (2006) is
implemented. However, in our case, the mask elements are selected in a way
that reduces the reconstruction error. Considering m known values of each

snapshot X', then the greedy algorithm implemented works as follows:

1. Initialize by randomly selecting m known values.

2. Starting with the first mask element, loop through all the possible
positions for the known values and calculate the reconstruction error
for each resulting mask.

3. Find the position of the element that minimizes the reconstruction error
and place the first element there.

4. Repeat steps 2-3 for all remaining mask elements.

This way, we can efficiently find positions for the mask elements that
yield an acceptable reconstruction error. It should be noted, however, that

this does not always lead to the globally optimal positions.

5. Results

5.1. CFD model

5.1.1. CFD model parameters

To elaborate on the model summary made in Section [3.2] further infor-
mation regarding the CFD model parameters is given in this section.

The prescribed inlet boundary conditions are inlet velocity conditions.
For each disk, the gas feed velocity is a time-dependent pulse function that
mirrors the inlet tube rotation, varying between 0 and V.. There is a phase

difference between the pulses of each disk. V., and the aforementioned
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phase difference are determined based on the experimental conditions and
geometry, taking into account: a) the 2 RPM rotational speed of the inlet
tube, b) the total inlet gas flow rate, ¢) the number of disks per run, d)
the two antipodal perforations per disk, e) the diameter of the perforations
(0.002 m), and f) the 60° angle difference between the perforations of each
disk.

Outlet pressure boundary conditions are applied at every other disk level.
This way, we account for the real geometry where the outlet perforations are
not aligned. This results in a model where only the first, the third, the fifth,
and the seventh outlet from the top are considered open.

Seven different chemical species are considered, along with a simplified
reaction scheme for the deposition of a-Al;O3. The molar fractions at the
inlet are the following: CO5 (0.0385), AICl3 (0.0169), HCI (0.0210), H2O
(1079), CO (107°), Hy (0.9203), and H,S (0.0033).

The process conditions for the alumina coating step are T=1005°C and
p=80 mbar, as indicated in (Hochauer et al.; 2012)). Further information can

be found in the recent work of Papavasileiou et al.| (2022]).

5.1.2. CFD model predictions

The CFD model has been tested for 4 different 7-disk reactor geometries.
All four 7-disk geometries are building blocks of the test case reactor, whose
2D representation is shown in Fig. 2] It is possible to predict the a-AlyOj
coating thickness with a maximum relative error of 8% and within 5% mean
absolute percentage error for each 7-disk geometry, when compared to the
available production data. The maximum observed mean absolute percent-

age error for the a-Al,O3 coating thickness is 4.33%. Simulations for each
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geometry consist of about 10° degrees of freedom. The solution time for each
geometry is approximately 3 core hours on an 11* Gen Intel(R) Core(TM)

i7-1185G7 processor. The results of the CFD simulations are summarized in

Fig.

5.2. Data-driven predictions

We implement the following tree-based methods: a) Regression Trees,
b) Random Forests, c¢) Gradient Boosting Regression Trees (GBRT) and
eXtreme Gradient Boosting Regression Trees (XGBoost). All the methods
have comparable performance. Among them, the best performing is XGBoost
and the results below focus on its predictions.

The dataset contains a total of 6114 observations and is split into a train-
ing set and a test set, using a ratio of 75/25. Each one of these observations
contain thickness measurements at the R position for a particular disk (cf.
Fig.2), corresponding to a number of inputs, detailed in Section . The nu-
merical features were standardized, and the categorical features were encoded

using binary encoding.

5.2.1. Hyperparameter selection
Optimal model performance, is influenced by the choice of hyperparam-
eters for each method. The most important hyperparameters of the imple-

mented tree-based ensemble methods are:

1. The maximum depth of the trees (dyay), i.e. the number of bifurcations
of the main “branch” of the tree. Selecting too large a tree depth
can lead to overfitting, which in essence means that the model fails to

generalize accurately.
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Figure 5: (a) Relative error for the CFD predictions for 3 different positions with available
production data inside the reactor. Simulations are performed for four different 7-disk
geometries in total. (b) Mean absolute percentage error (averaged over the 3 positions for
which data are available) for the CFD simulations for the 4 different reactor geometries.
(¢) Velocity magnitude, (d) Precursor Concentration and (e) Water Concentration inside

the reactor at a certain time during the deposition.

2. The number of trees (B). A large number of trees reduces the variance

of bagging methods, however it can lead to overfitting in the case of
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boosting methods.

3. For boosting methods specifically, another important hyperparameter
is the learning rate (\). The choice of A usually affects the optimal
B. For example, a very small \ usually requires a large B to achieve

satisfactory performance.

Searching for the optimal model hyperparameters in an exhaustive man-
ner is a computationally expensive task. The time required for all 5 tree-
based methods using an exhaustive grid search approach performing 10-fold
cross-validation was 43 core hours on an 11" Gen Intel(R) Core(TM) i7-
1185G.

To demonstrate here the effect of d,,.x, results are shown for fixed values
of B and \ (cf. Fig.[f]). For a constant number of trees (B = 10000), boosting
methods show better performance for low values of d,... On the contrary,
bagging methods indicate better performance for higher values of dax.

Overall, for all the hyperparameters tested, boosting methods appear to
outperform their bagging counterparts. Out of the two boosting methods, the
XGBoost method displays higher training and predicting speed. Specifically,
for the same training set and the same hyperparameters (B = 10000, dpax =
5 and A = 0.01), the average training time over 10 cross-validation splits
is 16.5s for the XGBoost model and 99.5s for the GBRT model. Moreover,
the average prediction time is 20ms for the XGBoost model and 333ms for
the GBRT model. Therefore, due to its lower computational cost, further
hyperparameter tuning will take place for the XGBoost algorithm, in order
to find the optimal hyperparameter combination.

After selecting the optimal value of maximum depth, we further inves-
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Figure 6: MAPE vs d.x for all methods after 10-fold cross-validation. B = 10000
for all ensemble methods. A = 0.01 for the boosting methods. For the base method
(regression tree) and bagging methods (Bagged Trees and Random Forests) increasing
the maximum depth of the trees leads to a reduced MAPE. For the boosting methods
(GBRT and XGBoost), the MAPE increases when increasing the maximum depth of the
trees. Random forest regression performing worse than the simple regression tree can be
attributed to the fact that it only considers a subset of available features when building

each tree of the ensemble.

tigate the effect of the number of trees B on the accuracy of the XGBoost
model. As indicated in Table [2| the accuracy of the model drastically im-
proves when B > 500, nevertheless, the trade-off is in the form of increased
computational cost.

Following hyperparameter optimization and tuning, the final values se-

lected for the XGBoost model are the following: dy.x = 5, B = 10000,
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Table 2: XGBoost model results after cross-validation for various values of B, where
dmax = 5 and A = 0.01. As expected, an increased number of base predictors improves
the performance of the ensemble boosting method. However, it also increases the training

time and prediction time of the model. All metrics are averaged over 10 cross-validation

splits.
Number of trees (B) MAPE  fipain (8)  tprea (mS)
10000 3.1% 16.3 20
5000 3.3% 8.0 14
2000 3.4% 3.3 9
1000 3.6% 1.7 9
500 3.9% 0.9 8
200 12.6% 0.4 8
100 33.8% 0.2 10
A =0.01.

5.2.2. Machine learning outcomes

Two more accuracy metrics are introduced here, the mean square error
(MSE) and the coefficient of determination (R?). When the model is trained
or tested on N observations and for each observation ¢ the predicted value is
y; while the actual value is y; and the average of the actual values is y, MSE

and R? can be written as follows:
N

MSE = % > @i— ) (15)

=1
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The prediction error of XGBoost regression model for the training set,

reaches a MAPE of 0.9%, versus 3.1% for the test set. The prediction ac-

curacy of the XGBoost model on the training set and on the test set can

be summarized in Figs. [7a] and [7D] respectively. Due to the confidentiality

of the production data, absolute a-Al,O3 thickness values cannot be pre-

sented. Therefore, only relative error values and normalized thickness values

are presented.
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Figure 7: (a) Training set performance: MSE:0.005 | MAE:0.051 | MAPE:0.9% | R2:0.980.
(b) Test set performance: MSE:0.059 | MAE:0.187 | MAPE:3.1% | R2:0.753.
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5.3. CFD vs ML
5.3.1. Predictive accuracy

For the test-case reactor set-up presented in Fig. [2] the prediction results
for the position closest to the outlet for both methods are given in Table [3]
Disk position is counted from the bottom to the top of the reactor.
Table 3: XGBoost prediction accuracy vs CFD prediction accuracy for the coating thick-
ness of inserts closest to the reactor outlet (R position). Errors relative to the available
production data are presented. The high error in the prediction of the CFD model for
the 61 reactor disk can be attributed to the fact that it is the bottom-most disk of the

simulated 7-disk geometry, and therefore the effect of the inlets and outlets that are below

it is not taken into account.

Disk position CFD prediction XGBoost prediction
39 3.2% 3.5%
35 1.0% -3.1%
23 -4.0% -7.0%
10 1.0% -5.5%
6 20.6% -2.8%
MAPE 6.0% 4.4%
Total prediction time (s) 43200 0.1

Despite the significant difference in the computational effort involved in
the CFD model in comparison to the ML regression model, both methods
have comparable accuracy on the test-case. CFD predictions for the test
reactor have a mean absolute percentage error of 6%, while XGBoost makes
predictions with a mean absolute percentage error of 4.4%. The high error

in the prediction of the CFD model for the 6'® reactor disk (20.6%) can be
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attributed to the fact that it is the bottom-most disk of the simulated 7-disk
geometry and therefore the effect of the inlets and outlets that are below it
is not taken into account. This can be solved by an extra 7-disk simulation,
where the disk of interest won’t be in the bottom-most position. This would
of course further increase the computational cost of the CFD approach. The
maximum observed absolute relative error for the predictions of the XGBoost

model on the test-case reactor is 7%.

5.8.2. Computational performance

Although the predictive accuracy of the two approaches is similar, they
demonstrate a very noticeable contrast when it comes to their computational
performance. Specifically, in the case of CFD, making predictions for an en-
tire production run would require 4 or 5 7-disk simulations. This corresponds
to a computational cost of 12 to 15 core hours. On the other hand, using
the XGBoost model to make predictions for an entire production run comes
with a computational cost of less than 1 core second. This translates to a

reduction of more than 99.99% in required resources.

5.4. Gappy POD

Results of our Gappy POD implementation will be presented for two

different cases:

1. The case of the full dataset.

2. The case of a single reactor.

In each case, the dataset consists of time-instances of the state vector,
over a period of 30 secs. Therefore, the full dataset eventually consists of 372

snapshots, whereas in the single reactor dataset, it consists of 31 vectors.
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In both cases, 87.5% of the available snapshots are used to derive the
POD basis of the training set. The rest of the snapshots (12.5%) are kept
and used for the validation of the method. For both cases, the data are scaled
in the range of [0, 1] using min-max normalization.

The number of modes used for the POD basis are selected after checking
the energy retained by the modes and the resulting reconstruction error. The
total retained energy for the full dataset and the single reactor dataset, is
shown in Fig. and Fig. [8c| respectively, whereas the reconstruction error
as a function of the basis size is shown in Fig. [8b] and Fig. [8d| respectively.

The full reactor dataset requires at least 50 POD modes to capture more
than 95% of the energy of the system, with a corresponding reconstruction
error (RMSE) of 0.0059. The single reactor dataset, is accurately represented
by 15 POD modes that reflect more than 98 % of the energy with a recon-
struction error (RMSE) of 0.004. Eventually, for the immediate comparison
of the results, the same basis size is considered, equal to 15 POD modes. The

corresponding retained energy and error are shown in Table

Table 4: Number of POD modes selected for each case, along with the corresponding

retained energy and reconstruction error.

Case # POD modes Energy retained Recon. error (RMSE)
Full dataset 15 81.69% 0.0373
Single reactor 15 98.70% 0.0040
Single reactor 5 82.74% 0.0456

After selecting the size of the POD basis for each case, the mask ele-
ments for Gappy POD are obtained using the greedy algorithm described in
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Figure 8: The energy retained (in blue) and the reconstruction error (in orange) of the
POD approximation using M modes. (a), (b): Energy and reconstruction error for the
full dataset. Only the first 100 modes are shown. (c), (d): Energy and reconstruction

error for the single reactor case.
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Section It should be noted that the mask length should be greater or
equal to the size of the POD basis. For all three cases, we allow one mask
element more than the size of the POD basis. It should be noted that in
all cases the mask elements acquired consist of all the quantities of interest
(velocity magnitude, pressure, precursor concentration, water concentration)
discussed in Section .2l

After acquiring the mask elements, the RMSE between the Gappy POD
approximation and the test set, along with the RMSE between the Gappy
POD approximation and the POD reconstruction, can be calculated. Specif-
ically, for the case of the full dataset, the RMSE between the Gappy POD
approximation and the test set is 0.0648 while the RMSE between the Gappy
POD approximation and the POD reconstruction is 0.0512 (cf. Fig. E[) For
the case of the single reactor, the RMSE between the Gappy POD approxi-
mation and the test set is 0.0099 while the RMSE between the Gappy POD
approximation and the POD reconstruction is 0.0064. If we choose to make a
comparison using the number of POD modes with the same retained energy
and reconstruction error, we choose 5 POD modes (82.74% retained energy
and 0.046 reconstruction error) and 6 mask elements for the single reactor
case. Then, the RMSE between the Gappy POD approximation and the test
set is 0.0474 while the RMSE between the Gappy POD approximation and
the POD reconstruction is 0.0143.

The performance of the method, is linked to how well the dataset is
spanned by the selected POD vectors, generally implying that a larger POD
basis is beneficial for the results. Nevertheless, since the ambition of this

approach is to select only a few measurements as mask elements, it is more
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Figure 9: On the left: Error between the Gappy POD approximation and the snapshots
of the test set for all cases. On the right: Error between the Gappy POD approximation
and the POD approximation for all cases. It is evident that the single reactor case shows
the lowest errors. This is probably due to the lower variance observed in the dataset of
the single reactor when compared with the full dataset. For the case of the single reactor,

using a smaller POD basis (5 modes instead of 15) leads to an increase in both errors.

6. Conclusions

This work presents an overview of the implementation of equation-based
and machine-learning methods in industrial-scale deposition applications.
The challenges associated with the complexity of the process and the charac-
teristics of real production data are discussed and the methods to overcome

them are presented.
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In the equation-based approach, a reduced model is presented and vali-
dated with production measurements of the coating thickness. The simplifi-
cations introduced and the pertinent assumptions upon which they are based
are discussed, along with the results. The trade-off between the computa-
tional cost associated with the CFD model and the physical insight obtained,
is discussed and compared to the ML approach. Coating thickness predic-
tions are possible with an average error of 6%. In addition, the CFD model,
predicts the distributions of velocity, and reactive species, illuminating thus,
the mechanisms that contribute to the final product. Furthermore, it can be
used to predict the thickness achieved in parts of the reactor where there are
no measurements. Moreover, the CFD approach also allows extrapolating for
different process conditions and different inlet reactant concentrations. For
the 7-disk CFD approach, the results of Table[3] show that appropriate selec-
tion of the 7-disk “building blocks” for the simulations is of high importance
for the accuracy of the prediction.

The ML approach is discussed in detail, as far as the possible specific
methods are concerned. The suitability of each is assessed, based on the data
available. Eventually the best performing ML method, XGBoost, is able to
deliver accurate and time-efficient coating thickness predictions, but cannot
provide insight into the transport of species that determines the coating
thickness.

The implementation of Gappy POD for this specific application, shows
how data-driven methods and CFD results can be intertwined to provide
further insight on the important quantities of interest inside the reactor. By

further analysis of the resulting mask elements, we can explore the hypo-
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thetical scenario of sensor placement inside such reactors. Furthermore, we
can reconstruct entire snapshots from a few measurements inside the reactor,
reducing in this way the computational cost of the problem.

It should be noted that the strategy employed here is not exclusive to
CFD modeling. The same workflow could still be implemented in other
applications, regardless of the equation-based modeling approach used. The
only limiting factor would be the amount and type of available data for the
application.

Another important observation is that specific combinations of inputs
can lead to the same outputs. This merits further investigation, due to its
importance in the actual production process, which is the topic of future
work.

To conclude, it is clear that each individual approach is a valuable tool in
studying a complex process offering different advantages: physical insight and
extrapolation abilities in CFD and time-efficient, accurate predictions in ML.
It is therefore worth investing the effort in each one of them, and ultimately,
in merging them in a hybrid approach with additional benefits. Ideally, the
resulting model could combine high accuracy, time-efficient predictions, and
excellent extrapolation ability, moving in this way toward a digital twin of

the process.
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