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Abstract

Computational Fluid Dynamics (CFD) and Machine Learning (ML) ap-

proaches are implemented and compared in an industrial Chemical Vapor

Deposition process for the production of cutting tools. In this work, the

aim is to analyze the pros and cons of each method and propose a blend of

the two approaches that is suitable in industrial applications, where the pro-

cess is too complicated to address with first-principles models and the data

do not allow the implementation of data-hungry methods. Both approaches

accurately predict the coating thickness (Mean Absolute Percentage Error

(MAPE) of 6.0% and 4.4% for CFD and ML respectively for the test case

reactor). CFD, despite its increased computational cost, both in terms of de-
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veloping and also calibrating for the application at hand, provides meaningful

insight and illuminates the process. On the other hand, ML can provide pre-

dictions in a time-efficient manner, and is thus appropriate for inline and

concurrent predictions. However, it is limited by the available data and has

low extrapolation ability. Equation-based and data-driven methods are com-

bined by exploiting a handful of CFD results for efficient interpolation in a

reduced space defined by the principal components of the dataset, by imple-

menting Gappy POD. This allows for the accurate reconstruction of the full

state-space with limited data.

Keywords: Chemical Vapor Deposition, Coating, supervised learning, CFD

modeling, industrial application, production data
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1. Introduction3

Chemical Vapor Deposition (CVD) processes are popular in a wide range4

of applications, including microelectronics (Creighton and Parmeter, 1993),5

sensors (Ozaydin-Ince et al., 2011) and wear resistant coatings (Kathrein6

et al., 2003). The coating process involves the nonlinear interplay of physical7

mechanisms, such as diffusion and convection, with a plethora of homoge-8

neous and heterogeneous chemical reactions. The competition between the9

different mechanisms determines the process outcome and the product qual-10

ity. It is therefore a fine example of a process that is too complicated to11

study with first-principles models, such as Computational Fluid Dynamics12

(CFD) and where the data is often not enough to implement sophisticated13
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data-driven strategies. Taking all of the above into consideration, the ob-14

jective of this work is to investigate the potential benefit of simplified CFD15

process models, accompanied by purely data-driven predictions using Ma-16

chine Learning (ML) approaches. Both methods are driven by the size and17

type of the available production data. In the CFD case, the data are used18

for calibration and validation and in the ML case for regression.19

Computational Fluid Dynamics is a valuable tool for studying deposi-20

tion processes (Kleijn and Hoogendoorn, 1991; Kleijn et al., 2007; Cheimar-21

ios et al., 2012; Cho and Mountziaris, 2013; Psarellis et al., 2018; Koronaki22

et al., 2019; Papavasileiou et al., 2022), since it allows the investigation of23

the flow field inside the reactor, as well as the main physical and chemical24

pathways that lead to the deposition of thin film coatings. Nevertheless,25

modeling industrial-scale deposition applications using CFD presents several26

challenges: Firstly, dealing with the complexity of the process, which often27

has several unknowns and secondly, the large scale of real applications.28

Specifically, the actual chemical reactions that lead to deposition, includ-29

ing their rates, are often unknown. Therefore, it is not possible to predict30

the effect of the interplay between transport phenomena and chemical kinet-31

ics on the deposition rate, necessitating the development of a kinetic model32

(Topka et al., 2022). Even when a chemical reaction scheme is available,33

some of its parameters may need to be fitted for the specific application.34

This parameter fitting involves an increased computational cost, as it usu-35

ally requires numerous simulations (Gakis et al., 2015; Koronaki et al., 2016;36

Gkinis et al., 2017, 2019). Nevertheless, CFD has been applied to several37

CVD applications, shedding light on previously “opaque” processes (Fotiadis38
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et al., 1990; Liu and Xiao, 2015; Aviziotis et al., 2017) while also allowing39

to predict their outcomes (Endo et al., 2004). Although attempts have been40

made towards increasing the efficiency of CFD models by implementing re-41

duced order modeling methods (Gkinis et al., 2019; Spencer et al., 2021),42

developing an efficient and accurate model in an industrial setting remains a43

challenging and time-consuming task.44

In the era of Industry 4.0, digitalization has become one of the main45

drivers of innovation (Kagermann, 2015) and production data are becoming46

more and more available. The industry is trying to exploit this data, seek-47

ing improvement in several domains, including: maintenance management48

(Saxena and Saad, 2007; Susto et al., 2015; Wu et al., 2019; Dalzochio et al.,49

2020) quality management (Kim et al., 2012, 2018; Carvajal Soto et al., 2019;50

Iqbal et al., 2019; Wang et al., 2022), production planning and control (Priore51

et al., 2018; Tulsyan et al., 2018; Ma et al., 2019; Agarwal et al., 2020; Deng52

et al., 2022), supply chain management (Du and Jiang, 2019), process out-53

come predictions (Cai et al., 2020; Azadi et al., 2022; Dai et al., 2022; Malley54

et al., 2022) and process optimization (He et al., 2021; Galvis et al., 2022).55

Furthermore, digital twins (Boyes and Watson, 2022) are becoming increas-56

ingly popular in the process industry (Hürkamp et al., 2020; Rasheed et al.,57

2020; Perno et al., 2022), as well as in other, diverse applications (Urcun58

et al., 2021; Kalaboukas et al., 2023). Although the application of sophisti-59

cated methods such as Deep Neural Networks (DNNs) (Blakseth et al., 2022;60

Deshpande et al., 2022), Physics Informed Neural Networks (PINNs) (Raissi61

et al., 2019) and manifold learning (Koronaki et al., 2023) has been demon-62

strated on controlled small scale problems, several challenges still remain63
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when incorporating ML in everyday industrial practice. Addressing these64

challenges is one of the main objectives of this work.65

The industrial application in this work is the coating of cutting tools with66

α-Al2O3 for increased wear resistance. Concerning CFD, the goal is to pro-67

pose the best possible simplified model, based on the available data which are68

necessary for verification and validation. This leads to a 2D, time-dependent69

CFD model, presented in detail in previous work (Papavasileiou et al., 2022).70

The proposed model implements representative boundary conditions and em-71

ploys a simple reaction scheme for the α-Al2O3 deposition with the goal of72

reducing the computational cost.73

Concerning ML, the first task is to pre-treat the available data, upon74

which the choice of method depends on. Addressing mixed types of data75

(categorical and numerical) is a common challenge in many applications, not76

restricted to deposition processes. Several regression models are trained to77

predict the α-Al2O3 coating thickness using characteristics of the reactor78

set-up and process conditions as inputs. In this work, the focus lies more on79

tree-based methods (James et al., 2021b) which are the best-performing for80

the given data-set.81

The two approaches are initially compared in their ability to accurately82

and efficiently predict the alumina coating thickness of the cutting tool in-83

serts. Specifically, the advantages and disadvantages of each strategy are as-84

sessed in terms of accuracy, interpretability, extrapolation ability and com-85

putational cost. As a final step, the two approaches are merged through86

the implementation of the Gappy Proper Orthogonal Decomposition (Gappy87

POD) method (Everson and Sirovich, 1995; Willcox, 2006). The latter, is88
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popular for optimal sensor placement, and here it adapted to propose a suffi-89

cient number of known data from which we can infer quantities that are not90

measurable.91

The manuscript is structured as follows: A concise overview of the process92

and the available production data is given in Section 2. The implemented93

methods (CFD, ML and Gappy POD) are presented in Sections 3 and 4. The94

results of each method are analyzed and compared in Section 5, followed by95

the conclusions in Section 6.96

2. Process description97

A two-step coating process takes place inside the studied industrial-scale,98

commercial CVD reactor (Sucotec SCT600TH). First, a Ti(C,N) base layer99

of about 9 µm is grown on the cemented carbide cutting inserts, such as the100

ones shown in Fig. 1a. Subsequently, an alumina layer is deposited under101

a AlCl3–CO2–HCl–H2–H2S chemical system. The temperature and pressure102

for the alumina coating step are T=1005°C and p=80 mbar, respectively103

(Hochauer et al., 2012). The alumina coating deposition step of the process104

takes approximately 3 hours.105

The CVD reactor consists of 40-50 perforated disks, stacked one on top106

of the other, whereon the inserts are placed. In Fig. 1b, a schematic of three107

such disks is shown for clarity. The mixture of gas reactants, enters the108

reactor via perforations on a rotating cylindrical tube, placed in the center109

of the structure of the stacked disks. There are two antipodal perforations for110

each disk level. There is a 60° angle difference between the axis connecting111

the inlet holes for each disk level. The rotational motion of the inlet tube112
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(rotating with a rotational speed of 2 RPM) causes the process to have an113

inherent periodic nature. The interior geometry of the reactor changes from114

production run to production run, since the geometry of the inserts (and the115

disks on which they are placed), changes based on production requirements.116

(a) (b)

Figure 1: (a) Indicative geometries of the coated cutting tools. (b) A 3D representation

of a 3-disk part of the reactor. The inlet perforations on the rotating inlet tube are shown

in red. The outlet perforations for each disk are shown in blue.

The main goal of the process is to achieve uniform coating thickness,117

since this uniformity also leads to uniform product longevity (Bar-Hen and118

Etsion, 2017). Ideally, coating thickness uniformity would be achieved across119

all production runs, reactors, and production sites. However, this is not120

always the case. For this reason, a way of predicting the coating thickness of121

the inserts given the reactor set-up is needed. Furthermore, coming up with122

a systematic way of assessing the factors that influence the coating thickness123

uniformity is also highly important.124
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2.1. Available data125

For the Ti(C,N)/α-Al2O3 multi-layer coating, the thickness measure-126

ments are performed via the Calotest method. A small spherical cavity127

is ground on the coated inserts using a rotating ball of known geometry,128

providing a tapered cross-section of the film when viewed under an optical129

microscope (Łępicka and Grądzka-Dahlke, 2019). This way, the thickness of130

both the Ti(C,N) and α-Al2O3 coating layers can be calculated. Measure-131

ments are usually taken for 3 positions on 5 disks of interest. Therefore, 15132

thickness measurements are available for each production run. A 2D rep-133

resentation of the reactor indicating the points where thickness is typically134

measured is shown in Fig. 2. These measurements allow for not only for135

the calibration and validation of the CFD model, but also for several ML136

approaches.137

Apart from coating thickness measurements, the dataset also contains138

several features concerning the process and the reactor setup, which will139

serve as inputs to the machine-learning model. The production “recipe” used140

for the coating is the available feature providing information regarding the141

process. Setup-wise, there is a plethora of available features for each disk of142

the reactor, including:143

1. The position of each disk inside the reactor.144

2. The number of inserts placed on each disk.145

3. The type of insert placed on each disk. Each type of insert has different146

geometrical characteristics.147

4. The type of disk used. The type of disk used is always relative to the148

type of insert placed on top of it.149
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Figure 2: Positions with available α-Al2O3 thickness values from the production data for

our test case. In general, across different production runs, the R position (the one closest

to the reactor outlet) is the one with the highest amount of data. For this reason, the ML

models are trained to make predictions for inserts placed in this position.
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5. The surface area of the inserts placed on the disk.150

These features allow for the creation of more features, such as the total151

surface area and the standard deviation of the surface area of the inserts152

that are coated inside the reactor. Another feature that can be created is the153

difference between the nominal surface area of the production “recipe” and154

the actual insert surface area inside the reactor. Furthermore, for each disk,155

we can exploit the information available for its neighboring disks.156

This way, we end up with several features, of which thirteen are used as157

inputs after being pre-processed. These features are summarized in Table 1.158

Considering the coating thickness measurements as outputs, we can train159

several supervised learning models to make coating thickness predictions per160

disk. In this context, during training, a labeled set of inputs is provided and161

specifically here, the inputs are the aforementioned features and the labels162

are the α-Al2O3 coating thickness measurements.163

3. Computational ingredients164

3.1. ML methods165

For the data-driven approach to the problem, the implementation of an166

assortment of machine learning methods for the prediction of coating thick-167

ness inside the reactor is investigated. All methods implemented fall into168

supervised learning methods.169

In supervised learning, each one of the input variables xi is associated with170

a response (or output) yi (James et al., 2021a). The goal of the ML strategy171

is to train a model able to relate the input variables xi to the output yi. This172

way, future observations can be predicted and the relationship between the173
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Table 1: Summary of the features included in the training of the regression models.

Feature Type Pre-processing

Number of inserts on disk Numerical (integer) standardization

Surface area of inserts on disk Numerical (float) standardization

Disk position Numerical (integer) standardization

Total surface area of inserts

inside the reactor
Numerical (float) standardization

Surface area standard deviation Numerical (float) standardization

|Nominal “recipe” surface area

- actual surface area|
Numerical (float) standardization

Production “recipe” Categorical binary encoding

Insert geometry Categorical binary encoding

Disk geometry Categorical binary encoding

Insert geometry – disk above Categorical binary encoding

Insert geometry – disk below Categorical binary encoding

Disk geometry – disk above Categorical binary encoding

Disk geometry – disk below Categorical binary encoding

inputs and the output can be interpreted. Here, the goal is to predict the174

α-Al2O3 coating thickness (a continuous target variable) from several inputs,175

using a regression method. The specific methods include but are not limited176

to:177

• Linear methods, such as linear, lasso or ridge regression.178

• Non-linear methods, such as polynomial regression.179
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• Tree-based methods, such as regression trees and their ensemble ver-180

sions: random forests, gradient boosted regression trees and extreme181

gradient boosted regression trees.182

• Artificial neural networks.183

During the early phases of this research, several techniques were utilized,184

including linear, lasso, and ridge regression, as well as support vector ma-185

chines and Gaussian process regression. Preliminary findings indicated that186

tree-based methods outperformed the other techniques, and as a result, the187

focus of this study is on tree-based methods.188

The models’ accuracy will be evaluated via two different metrics, namely189

the mean absolute error (MAE) and the mean absolute percentage error190

(MAPE). When the model is trained or tested on N observations and for191

each observation i the prediction is ŷi while the actual value is yi, MAE and192

MAPE can be written as follows:193

MAE =
1

N

N∑
i=1

|ŷi − yi| (1)194

MAPE =
1

N

N∑
i=1

|ŷi − yi|
yi

(2)195

Two different computational costs pertain to each ML model, the training196

time (ttrain) and the prediction time (tpred) of the model. Both of these costs197

are expressed in CPU time.198

3.1.1. Tree-based methods199

Tree-based methods work by partitioning the space of the inputs X into200

a set of rectangles. Afterwards, a simple model (e.g. a constant) is fit in each201
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partition. The process starts by splitting the entire input space in two based202

on a variable of the input space and its value. The optimal variable and split203

point are chosen in order to achieve an accurate fit. Then, either or both204

of the resulting regions are split again in two, once again using the optimal205

input and split point. This procedure continues until a stopping criterion206

has been met. The occurring binary splits allow for model interpretability207

since the entire sample space can be described by a single tree. Tree-based208

methods can be used for both regression and classification purposes (Hastie209

et al., 2009a).210

The prediction accuracy of a single tree is often not as high as that of other211

methods. Furthermore, a small change in the data can lead to an entirely212

different tree layout. These two issues and especially the predictive perfor-213

mance of the trees can be rectified by combining multiple trees through the214

implementation of ensemble methods such as bagging and boosting (James215

et al., 2021b).216

The concept behind ensemble methods is to build a prediction model217

by combining a number of simpler base methods, in two steps: First, a218

number of base learners must be created from the available data. The second219

step involves the combination of these learners into one ensemble predictor.220

The most common ensemble tree-based methods are random forests, bagged221

trees and gradient boosted trees. These methods, however, have some key222

differences between them.223

Random forests and bagged trees, discussed here, operate similarly. They224

both build B regression trees and each tree is trained using bootstrap-225

sampled (i.e. sample a particular data-point and then reintroduce it to the226
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dataset), versions of the original dataset. Bagging regression methods pro-227

vide a prediction by averaging the outputs of the B trees that they consist228

of. If ŷi,b is the prediction of each grown tree, then the final prediction of the229

bagging method ŷi,bag is given by:230

ŷi,bag =
1

B

B∑
b=1

ŷi,b (3)231

Random forests and bagged trees differ only in the amount of input fea-232

tures Ninput that are considered when building each tree. In bagged trees,233

all available features are considered. On the contrary, in random forests, a234

random subset of p input features is considered. This serves the purpose of235

de-correlating the individual trees, since the trees are not always built by236

selecting the global optimal features, but by selecting the optimal feature237

from a randomly sampled subset of the input features (James et al., 2021b).238

Gradient boosting and extreme gradient boosting are boosting methods.239

In the case of boosting methods, contrary to bagging methods, the B base240

trees are created sequentially. First, the first tree of the ensemble is created.241

Afterwards, each created tree is fitted to the difference between the value242

predicted by the previous tree and the real output. This way, each tree243

improves the shortcomings of the previous one. There is no averaging of the244

result of the B trees in this case (Hastie et al., 2009b).245

Therefore, after building the bth tree which outputs γjb and is trained on246

the residual of the output of the ensemble after the previous tree has been247

built, the output of the ensemble fb(x) can be written as:248
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fb(x) = fb−1(x) + λ ·
J∑

j=1

γjbI(x ∈ Rjm) (4)249

where I is the indicator function, and λ is the learning rate of the boosting250

procedure. λ serves the purpose of scaling the contribution of the output of251

each tree to the final prediction of the ensemble.252

The result of the model is the output of the ensemble after the final tree253

has been built. Boosting methods are more prone to overfitting for large254

values of B than bagging methods. For this reason, B needs to be carefully255

selected through cross-validation.256

3.1.2. Challenges257

Applying data-driven methods to a real-world dataset presents several258

challenges. First and foremost, the dataset needs to be “cleaned”: Given that259

the production dataset is derived from different production sites, different260

reactors, and different people, it is bound to contain some errors. These261

errors must be identified and corrected before any type of analysis. Then,262

there is the question of the format of the data. Even when the data is neatly263

organized in an SQL database, it still needs to be extracted and formatted264

(using the pandas python library (McKinney, 2010), for example) so that265

it can be used to train models in a python framework. Afterwards comes266

the question of data type. In this particular application, there are both267

numeric and alphanumeric features (features that contain names instead of268

values). Since several of the implemented methods are not compatible with269

alphanumeric (categorical) features, those features need to be encoded in a270

way (i.e. binary encoding, one-hot encoding (Potdar et al., 2017)) that allows271
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them to be used in our models. Finally, once the data is ready, the task is272

to find the best performing model and to determine the hyperparameters273

that influence performance. Therefore, a hyperparameter optimization step274

must also be included. By following this step-by-step approach, we can275

establish a data pipeline specific to our data that allows us to overcome276

all the aforementioned challenges. This however requires experience, input277

from the process experts, along with a clear understanding of the data.278

3.2. CFD modeling: Implementation & challenges279

For this specific application, a digital “replica” of the process would have280

to be a 3D, time-dependent full reactor (40-50 disks) model which would281

include a complex reaction scheme. A complex reaction scheme, would lead282

to more degrees of freedom and an increased number of kinetic parameters283

that would need to be fitted. Apart from this, given the rotation of the284

inlet tube (and therefore the fact that the problem is not axisymmetric) a285

moving mesh would also need to be implemented. This would translate into286

a computationally intractable task. If we consider that the reactor interior287

geometry changes on a day-to-day basis, since the geometries of inserts and288

the disks on which they are placed change based on production quotas, a289

computationally expensive model is not a suitable method to study this in-290

dustrial application. For this reason, aiming to drive the computational cost291

down, the problem was approached as follows:292

• The problem is modeled in 2D.293

• The boundary conditions for both the inlet and the outlet are selected294

in a way that is representative of their 3D characteristics.295
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• The model takes into account only 7-disk parts of the reactor in a divide296

and conquer approach.297

• A simpler reaction scheme that still leads to accurate results is used.298

To efficiently tackle the challenges of the process, a 2D, time-dependent299

model that accounts for the transport of mass, momentum, and species inside300

the reactor is proposed. The COMSOL Multiphysics® software was used for301

the CFD modeling. The interested reader can seek detailed information302

in the recent work of Papavasileiou et al. (2022); here the key points are303

summarized for completeness.304

A reaction scheme consisting of a homogeneous reaction in the gas phase305

and a heterogeneous reaction for the deposition of α-Al2O3 is part of the306

model. The following assumptions are made: a) laminar and incompressible307

flow, b) constant temperature of in the entire reactor domain, c) ideal gas308

phase. The CFD model accounts for 7-disk “building blocks” of the reactor,309

in order to keep the computational cost low. To account for the rotation of310

the inlet tube, pulse velocity boundary conditions are applied at the inlets.311

To represent the placement of the holes on the inlet tube in the 2D com-312

putational geometry, a phase difference is included between the boundary313

conditions of each disk. A similar approach is taken for the outlet perfora-314

tions. Since they are not aligned, pressure boundary conditions are applied315

at every other disk (1st open, 2nd closed and so forth). In order to model316

the deposition of α-Al2O3 under the AlCl3–CO2–HCl–H2–H2S chemical sys-317

tem, we implement a simple reaction scheme based on the work of Schierling318

et al. (1999). Implementing this simpler scheme results in a lower computa-319
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tional cost. The simulations account for two full rotations (or periods) of the320

feeding tube.321

4. Combining equation-based and data-driven approaches using322

Gappy POD323

In this work, the Gappy POD method is used for the reconstruction of sev-324

eral 7-disk reactor snapshots acquired using the aforementioned CFD model325

using limited - or “gappy” data. Gappy POD was first introduced by Everson326

and Sirovich (1995) and then implemented, among others, to a CFD airfoil327

application by Willcox (2006) and for non-linear fracture mechanics modeling328

(Kerfriden et al., 2013). Optimal sensor placement is another problem that329

can be solved using the Gappy POD method, as indicated in the works of330

Willcox (2006) and Jo et al. (2019). This is achieved by finding the optimal331

way of filling the “gaps” in the data, or in other words, selecting the sensor332

positions that give the most information possible.333

A concise overview of the method, along with the procedure followed for334

the acquisition of data and the metrics used for the evaluation of the method,335

are presented in the following paragraphs.336

4.1. Overview337

In this section, the Gappy POD method is summarized for completeness.338

Let’s consider a dataset X of M vectors (represented as d-dimensional real339

vectors x1, . . . , xM). A POD basis, Φ ∈ RN×M , of X is computed, such that340

X can be approximated as a linear combination of p vectors:341
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X̃ =

p∑
j=1

cjΦj (5)342

or in matrix-vector format:343

X̃ = Φ · c (6)344

The size of the truncated POD basis Φ is selected based on the error345

between the actual vector X and the reconstructed approximation X̃ :346

reconstruction error = ∥X− X̃∥ (7)347

Another factor that can be taken into account when selecting the size of348

the truncated basis is the total energy retained by the selected number of349

modes. For each basis vector j, the relative importance (Ej) is given by:350

Ej =
λj∑p
i=1 λi

(8)351

and therefore, the total energy retained for the k retained modes is given by:352

Etotal =
k∑

j=1

Ej (9)353

Let us consider a vector X ′ that is spanned by the same basis Φ and that354

only m values of this vector are known, such that the partial vector X ′
partial355

can be defined:356

X ′
partial = m ·X ′,m ∈ Rm×N (10)357

The goal is to find coefficients c′, such that an approximation X̃ ′ of the358

vector X ′ can be defined as :359
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X̃ ′ = X ′ · c′ (11)360

then:361

X ′
partial ≈ m ·X ′ · c′ (12)362

Finding the values of c′ that satisfy the above leads to an optimization363

problem, which results in the solution of the linear system:364

M · c′ = (m ·Φ)′ ·X ′
partial (13)365

with M = (m ·Φ)′ · (m ·Φ)366

4.2. CFD data sampling367

Snapshots, i.e. vectors containing information regarding the system’s368

state at a specific time, of 12 different 7-disk reactor parts will be used for369

the implementation of the Gappy POD method. For each reactor part, there370

31 available time-instances (each one with 1 second time difference from the371

previous). This way, the full dataset consists of 372 vectors.372

At each time-instance, 4 quantities of interest are sampled along the lines373

connecting inlet-outlet at each disk level. The points of these lines are then374

interpolated at 250 specific query points using linear interpolation. In this375

manner, 250 evenly spaced points along each line are obtained. An example376

of the lines along which the quantities of interest are sampled is demonstrated377

in Fig. 3.378

The quantities of interest at each point are:379

1. The velocity magnitude (U).380
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Figure 3: In blue: The seven lines along which the 4 quantities of interest

(U, p, CAlCl3 , CH2O) are sampled. In orange: The disk with available thickness measure-

ments. The thickness measurements, as well as the α-Al2O3 deposition rates at the inserts

of this disk, are also included for our implementation of Gappy POD.

2. The pressure (p).381

3. The concentration of the precursor AlCl3 (CAlCl3).382

4. The concentration of water (CH2O).383

Furthermore, the deposition rates as predicted by the CFD model along384

with the available thickness data for 3 positions (R0, R1/2, R) for each 7-disk385

reactor part, are included in each snapshot. An overview of the resulting386

dataset after sampling and organizing the vectors is presented in Fig. 4.387

It is worth noting that a plethora of input parameters influences the388
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final product, the most important of which include the configuration of the389

reactor’s interior geometry and the production "recipe". The latter includes390

all the steps and chemical species involved in the production of a single391

coating layer. In this work, to make the simulations tractable, the focus lies392

on a single "recipe" for a single product and various geometries, without loss393

of generality.394

Figure 4: The final matrix considered for the Gappy POD method. A total of 31 time-

instances for 12 different reactor geometries have been sampled. These contain all 4

quantities of interest (velocity magnitude, pressure, precursor concentration (C1), water

concentration (C2) along with the calculated deposition rates (D.R) and the coating thick-

ness measurements (h) taken from the production data. In our case, T = 31 (number of

time-instances per reactor) and N = 1750 (total number of points: 7 lines containing 250

points each).
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4.3. Performance metrics395

The performance of the Gappy POD approach will be evaluated using the396

Root Mean Squared Error (RMSE) between: a) the Gappy POD reconstruc-397

tion and the POD reconstruction, b) the Gappy POD reconstruction and the398

snapshots of the reactor given by the CFD model. The RMSE between two399

values (ŷi and yi) for N observations can be written as follows:400

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (14)401

4.4. Mask selection402

The effectiveness of Gappy POD depends on the condition number of403

matrix M , which is defined in Eq. (13). The matrix M is created from the404

inner products of the "gappy" POD vectors, which are the elements of the405

original POD vectors corresponding to the known elements of X ′. Since406

these vectors are no longer orthogonal, the matrix M is fully populated. For407

orthogonality to be preserved, the known element positions and non-zero408

elements of M must be appropriately arranged. Additionally, the diagonal409

entries of M must not be too small, indicating that the POD basis element410

at that point should not be small. The condition number of the matrix411

M reflects these requirements, with a smaller condition number indicating412

greater satisfaction of these conditions. This analysis is detailed in (Willcox,413

2006), in the context of optimal sensor placement, and in (Alonso et al.,414

2004a,b), which consider the angle between the measurement subspace and415

the low dimensional space that spans the data.416

To determine the known values of the vector X ′ in a more systematic417
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manner, a greedy algorithm similar to the one proposed by Willcox (2006) is418

implemented. However, in our case, the mask elements are selected in a way419

that reduces the reconstruction error. Considering m known values of each420

snapshot X ′, then the greedy algorithm implemented works as follows:421

1. Initialize by randomly selecting m known values.422

2. Starting with the first mask element, loop through all the possible423

positions for the known values and calculate the reconstruction error424

for each resulting mask.425

3. Find the position of the element that minimizes the reconstruction error426

and place the first element there.427

4. Repeat steps 2-3 for all remaining mask elements.428

This way, we can efficiently find positions for the mask elements that429

yield an acceptable reconstruction error. It should be noted, however, that430

this does not always lead to the globally optimal positions.431

5. Results432

5.1. CFD model433

5.1.1. CFD model parameters434

To elaborate on the model summary made in Section 3.2, further infor-435

mation regarding the CFD model parameters is given in this section.436

The prescribed inlet boundary conditions are inlet velocity conditions.437

For each disk, the gas feed velocity is a time-dependent pulse function that438

mirrors the inlet tube rotation, varying between 0 and Vmax. There is a phase439

difference between the pulses of each disk. Vmax and the aforementioned440

24



phase difference are determined based on the experimental conditions and441

geometry, taking into account: a) the 2 RPM rotational speed of the inlet442

tube, b) the total inlet gas flow rate, c) the number of disks per run, d)443

the two antipodal perforations per disk, e) the diameter of the perforations444

(0.002 m), and f) the 60° angle difference between the perforations of each445

disk.446

Outlet pressure boundary conditions are applied at every other disk level.447

This way, we account for the real geometry where the outlet perforations are448

not aligned. This results in a model where only the first, the third, the fifth,449

and the seventh outlet from the top are considered open.450

Seven different chemical species are considered, along with a simplified451

reaction scheme for the deposition of α-Al2O3. The molar fractions at the452

inlet are the following: CO2 (0.0385), AlCl3 (0.0169), HCl (0.0210), H2O453

(10−6), CO (10−6), H2 (0.9203), and H2S (0.0033).454

The process conditions for the alumina coating step are T=1005°C and455

p=80 mbar, as indicated in (Hochauer et al., 2012). Further information can456

be found in the recent work of Papavasileiou et al. (2022).457

5.1.2. CFD model predictions458

The CFD model has been tested for 4 different 7-disk reactor geometries.459

All four 7-disk geometries are building blocks of the test case reactor, whose460

2D representation is shown in Fig. 2. It is possible to predict the α-Al2O3461

coating thickness with a maximum relative error of 8% and within 5% mean462

absolute percentage error for each 7-disk geometry, when compared to the463

available production data. The maximum observed mean absolute percent-464

age error for the α-Al2O3 coating thickness is 4.33%. Simulations for each465
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geometry consist of about 106 degrees of freedom. The solution time for each466

geometry is approximately 3 core hours on an 11th Gen Intel(R) Core(TM)467

i7-1185G7 processor. The results of the CFD simulations are summarized in468

Fig. 5.469

5.2. Data-driven predictions470

We implement the following tree-based methods: a) Regression Trees,471

b) Random Forests, c) Gradient Boosting Regression Trees (GBRT) and472

eXtreme Gradient Boosting Regression Trees (XGBoost). All the methods473

have comparable performance. Among them, the best performing is XGBoost474

and the results below focus on its predictions.475

The dataset contains a total of 6114 observations and is split into a train-476

ing set and a test set, using a ratio of 75/25. Each one of these observations477

contain thickness measurements at the R position for a particular disk (cf.478

Fig. 2), corresponding to a number of inputs, detailed in Section 2.1. The nu-479

merical features were standardized, and the categorical features were encoded480

using binary encoding.481

5.2.1. Hyperparameter selection482

Optimal model performance, is influenced by the choice of hyperparam-483

eters for each method. The most important hyperparameters of the imple-484

mented tree-based ensemble methods are:485

1. The maximum depth of the trees (dmax), i.e. the number of bifurcations486

of the main “branch” of the tree. Selecting too large a tree depth487

can lead to overfitting, which in essence means that the model fails to488

generalize accurately.489
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(a) (b)

(c) (d) (e)

Figure 5: (a) Relative error for the CFD predictions for 3 different positions with available

production data inside the reactor. Simulations are performed for four different 7-disk

geometries in total. (b) Mean absolute percentage error (averaged over the 3 positions for

which data are available) for the CFD simulations for the 4 different reactor geometries.

(c) Velocity magnitude, (d) Precursor Concentration and (e) Water Concentration inside

the reactor at a certain time during the deposition.

2. The number of trees (B). A large number of trees reduces the variance490

of bagging methods, however it can lead to overfitting in the case of491
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boosting methods.492

3. For boosting methods specifically, another important hyperparameter493

is the learning rate (λ). The choice of λ usually affects the optimal494

B. For example, a very small λ usually requires a large B to achieve495

satisfactory performance.496

Searching for the optimal model hyperparameters in an exhaustive man-497

ner is a computationally expensive task. The time required for all 5 tree-498

based methods using an exhaustive grid search approach performing 10-fold499

cross-validation was 43 core hours on an 11th Gen Intel(R) Core(TM) i7-500

1185G.501

To demonstrate here the effect of dmax, results are shown for fixed values502

of B and λ (cf. Fig. 6). For a constant number of trees (B = 10000), boosting503

methods show better performance for low values of dmax. On the contrary,504

bagging methods indicate better performance for higher values of dmax.505

Overall, for all the hyperparameters tested, boosting methods appear to506

outperform their bagging counterparts. Out of the two boosting methods, the507

XGBoost method displays higher training and predicting speed. Specifically,508

for the same training set and the same hyperparameters (B = 10000, dmax =509

5 and λ = 0.01), the average training time over 10 cross-validation splits510

is 16.5s for the XGBoost model and 99.5s for the GBRT model. Moreover,511

the average prediction time is 20ms for the XGBoost model and 333ms for512

the GBRT model. Therefore, due to its lower computational cost, further513

hyperparameter tuning will take place for the XGBoost algorithm, in order514

to find the optimal hyperparameter combination.515

After selecting the optimal value of maximum depth, we further inves-516

28



Figure 6: MAPE vs dmax for all methods after 10-fold cross-validation. B = 10000

for all ensemble methods. λ = 0.01 for the boosting methods. For the base method

(regression tree) and bagging methods (Bagged Trees and Random Forests) increasing

the maximum depth of the trees leads to a reduced MAPE. For the boosting methods

(GBRT and XGBoost), the MAPE increases when increasing the maximum depth of the

trees. Random forest regression performing worse than the simple regression tree can be

attributed to the fact that it only considers a subset of available features when building

each tree of the ensemble.

tigate the effect of the number of trees B on the accuracy of the XGBoost517

model. As indicated in Table 2, the accuracy of the model drastically im-518

proves when B ≥ 500, nevertheless, the trade-off is in the form of increased519

computational cost.520

Following hyperparameter optimization and tuning, the final values se-521

lected for the XGBoost model are the following: dmax = 5, B = 10000,522
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Table 2: XGBoost model results after cross-validation for various values of B, where

dmax = 5 and λ = 0.01. As expected, an increased number of base predictors improves

the performance of the ensemble boosting method. However, it also increases the training

time and prediction time of the model. All metrics are averaged over 10 cross-validation

splits.

Number of trees (B) MAPE t̄train (s) t̄pred (ms)

10000 3.1% 16.3 20

5000 3.3% 8.0 14

2000 3.4% 3.3 9

1000 3.6% 1.7 9

500 3.9% 0.9 8

200 12.6% 0.4 8

100 33.8% 0.2 10

λ = 0.01.523

5.2.2. Machine learning outcomes524

Two more accuracy metrics are introduced here, the mean square error525

(MSE) and the coefficient of determination (R2). When the model is trained526

or tested on N observations and for each observation i the predicted value is527

ŷi while the actual value is yi and the average of the actual values is ȳ, MSE528

and R2 can be written as follows:529

MSE =
1

N

N∑
i=1

(ŷi − yi)
2 (15)530
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R2 = 1−

N∑
i=1

(ŷi − yi)
2

N∑
i=1

(yi − ȳ)2
(16)531

The prediction error of XGBoost regression model for the training set,532

reaches a MAPE of 0.9%, versus 3.1% for the test set. The prediction ac-533

curacy of the XGBoost model on the training set and on the test set can534

be summarized in Figs. 7a and 7b respectively. Due to the confidentiality535

of the production data, absolute α-Al2O3 thickness values cannot be pre-536

sented. Therefore, only relative error values and normalized thickness values537

are presented.538

(a) (b)

Figure 7: (a) Training set performance: MSE:0.005 | MAE:0.051 | MAPE:0.9% | R2:0.980.

(b) Test set performance: MSE:0.059 | MAE:0.187 | MAPE:3.1% | R2:0.753.
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5.3. CFD vs ML539

5.3.1. Predictive accuracy540

For the test-case reactor set-up presented in Fig. 2, the prediction results541

for the position closest to the outlet for both methods are given in Table 3.542

Disk position is counted from the bottom to the top of the reactor.543

Table 3: XGBoost prediction accuracy vs CFD prediction accuracy for the coating thick-

ness of inserts closest to the reactor outlet (R position). Errors relative to the available

production data are presented. The high error in the prediction of the CFD model for

the 6th reactor disk can be attributed to the fact that it is the bottom-most disk of the

simulated 7-disk geometry, and therefore the effect of the inlets and outlets that are below

it is not taken into account.

Disk position CFD prediction XGBoost prediction

39 3.2% 3.5%

35 1.0% -3.1%

23 -4.0% -7.0%

10 1.0% -5.5%

6 20.6% -2.8%

MAPE 6.0% 4.4%

Total prediction time (s) 43200 0.1

Despite the significant difference in the computational effort involved in544

the CFD model in comparison to the ML regression model, both methods545

have comparable accuracy on the test-case. CFD predictions for the test546

reactor have a mean absolute percentage error of 6%, while XGBoost makes547

predictions with a mean absolute percentage error of 4.4%. The high error548

in the prediction of the CFD model for the 6th reactor disk (20.6%) can be549
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attributed to the fact that it is the bottom-most disk of the simulated 7-disk550

geometry and therefore the effect of the inlets and outlets that are below it551

is not taken into account. This can be solved by an extra 7-disk simulation,552

where the disk of interest won’t be in the bottom-most position. This would553

of course further increase the computational cost of the CFD approach. The554

maximum observed absolute relative error for the predictions of the XGBoost555

model on the test-case reactor is 7%.556

5.3.2. Computational performance557

Although the predictive accuracy of the two approaches is similar, they558

demonstrate a very noticeable contrast when it comes to their computational559

performance. Specifically, in the case of CFD, making predictions for an en-560

tire production run would require 4 or 5 7-disk simulations. This corresponds561

to a computational cost of 12 to 15 core hours. On the other hand, using562

the XGBoost model to make predictions for an entire production run comes563

with a computational cost of less than 1 core second. This translates to a564

reduction of more than 99.99% in required resources.565

5.4. Gappy POD566

Results of our Gappy POD implementation will be presented for two567

different cases:568

1. The case of the full dataset.569

2. The case of a single reactor.570

In each case, the dataset consists of time-instances of the state vector,571

over a period of 30 secs. Therefore, the full dataset eventually consists of 372572

snapshots, whereas in the single reactor dataset, it consists of 31 vectors.573
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In both cases, 87.5% of the available snapshots are used to derive the574

POD basis of the training set. The rest of the snapshots (12.5%) are kept575

and used for the validation of the method. For both cases, the data are scaled576

in the range of [0, 1] using min-max normalization.577

The number of modes used for the POD basis are selected after checking578

the energy retained by the modes and the resulting reconstruction error. The579

total retained energy for the full dataset and the single reactor dataset, is580

shown in Fig. 8a and Fig. 8c respectively, whereas the reconstruction error581

as a function of the basis size is shown in Fig. 8b and Fig. 8d respectively.582

The full reactor dataset requires at least 50 POD modes to capture more583

than 95% of the energy of the system, with a corresponding reconstruction584

error (RMSE) of 0.0059. The single reactor dataset, is accurately represented585

by 15 POD modes that reflect more than 98 % of the energy with a recon-586

struction error (RMSE) of 0.004. Eventually, for the immediate comparison587

of the results, the same basis size is considered, equal to 15 POD modes. The588

corresponding retained energy and error are shown in Table 4.589

Table 4: Number of POD modes selected for each case, along with the corresponding

retained energy and reconstruction error.

Case # POD modes Energy retained Recon. error (RMSE)

Full dataset 15 81.69% 0.0373

Single reactor 15 98.70% 0.0040

Single reactor 5 82.74% 0.0456

After selecting the size of the POD basis for each case, the mask ele-590

ments for Gappy POD are obtained using the greedy algorithm described in591
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(a) (b)

(c) (d)

Figure 8: The energy retained (in blue) and the reconstruction error (in orange) of the

POD approximation using M modes. (a), (b): Energy and reconstruction error for the

full dataset. Only the first 100 modes are shown. (c), (d): Energy and reconstruction

error for the single reactor case.
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Section 4.4. It should be noted that the mask length should be greater or592

equal to the size of the POD basis. For all three cases, we allow one mask593

element more than the size of the POD basis. It should be noted that in594

all cases the mask elements acquired consist of all the quantities of interest595

(velocity magnitude, pressure, precursor concentration, water concentration)596

discussed in Section 4.2.597

After acquiring the mask elements, the RMSE between the Gappy POD598

approximation and the test set, along with the RMSE between the Gappy599

POD approximation and the POD reconstruction, can be calculated. Specif-600

ically, for the case of the full dataset, the RMSE between the Gappy POD601

approximation and the test set is 0.0648 while the RMSE between the Gappy602

POD approximation and the POD reconstruction is 0.0512 (cf. Fig. 9). For603

the case of the single reactor, the RMSE between the Gappy POD approxi-604

mation and the test set is 0.0099 while the RMSE between the Gappy POD605

approximation and the POD reconstruction is 0.0064. If we choose to make a606

comparison using the number of POD modes with the same retained energy607

and reconstruction error, we choose 5 POD modes (82.74% retained energy608

and 0.046 reconstruction error) and 6 mask elements for the single reactor609

case. Then, the RMSE between the Gappy POD approximation and the test610

set is 0.0474 while the RMSE between the Gappy POD approximation and611

the POD reconstruction is 0.0143.612

The performance of the method, is linked to how well the dataset is613

spanned by the selected POD vectors, generally implying that a larger POD614

basis is beneficial for the results. Nevertheless, since the ambition of this615

approach is to select only a few measurements as mask elements, it is more616

36



beneficial to work with the smallest possible number of POD vectors.617

Figure 9: On the left: Error between the Gappy POD approximation and the snapshots

of the test set for all cases. On the right: Error between the Gappy POD approximation

and the POD approximation for all cases. It is evident that the single reactor case shows

the lowest errors. This is probably due to the lower variance observed in the dataset of

the single reactor when compared with the full dataset. For the case of the single reactor,

using a smaller POD basis (5 modes instead of 15) leads to an increase in both errors.

6. Conclusions618

This work presents an overview of the implementation of equation-based619

and machine-learning methods in industrial-scale deposition applications.620

The challenges associated with the complexity of the process and the charac-621

teristics of real production data are discussed and the methods to overcome622

them are presented.623

37



In the equation-based approach, a reduced model is presented and vali-624

dated with production measurements of the coating thickness. The simplifi-625

cations introduced and the pertinent assumptions upon which they are based626

are discussed, along with the results. The trade-off between the computa-627

tional cost associated with the CFD model and the physical insight obtained,628

is discussed and compared to the ML approach. Coating thickness predic-629

tions are possible with an average error of 6%. In addition, the CFD model,630

predicts the distributions of velocity, and reactive species, illuminating thus,631

the mechanisms that contribute to the final product. Furthermore, it can be632

used to predict the thickness achieved in parts of the reactor where there are633

no measurements. Moreover, the CFD approach also allows extrapolating for634

different process conditions and different inlet reactant concentrations. For635

the 7-disk CFD approach, the results of Table 3, show that appropriate selec-636

tion of the 7-disk “building blocks” for the simulations is of high importance637

for the accuracy of the prediction.638

The ML approach is discussed in detail, as far as the possible specific639

methods are concerned. The suitability of each is assessed, based on the data640

available. Eventually the best performing ML method, XGBoost, is able to641

deliver accurate and time-efficient coating thickness predictions, but cannot642

provide insight into the transport of species that determines the coating643

thickness.644

The implementation of Gappy POD for this specific application, shows645

how data-driven methods and CFD results can be intertwined to provide646

further insight on the important quantities of interest inside the reactor. By647

further analysis of the resulting mask elements, we can explore the hypo-648
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thetical scenario of sensor placement inside such reactors. Furthermore, we649

can reconstruct entire snapshots from a few measurements inside the reactor,650

reducing in this way the computational cost of the problem.651

It should be noted that the strategy employed here is not exclusive to652

CFD modeling. The same workflow could still be implemented in other653

applications, regardless of the equation-based modeling approach used. The654

only limiting factor would be the amount and type of available data for the655

application.656

Another important observation is that specific combinations of inputs657

can lead to the same outputs. This merits further investigation, due to its658

importance in the actual production process, which is the topic of future659

work.660

To conclude, it is clear that each individual approach is a valuable tool in661

studying a complex process offering different advantages: physical insight and662

extrapolation abilities in CFD and time-efficient, accurate predictions in ML.663

It is therefore worth investing the effort in each one of them, and ultimately,664

in merging them in a hybrid approach with additional benefits. Ideally, the665

resulting model could combine high accuracy, time-efficient predictions, and666

excellent extrapolation ability, moving in this way toward a digital twin of667

the process.668
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