[en] Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice.
Disciplines :
Neurology Genetics & genetic processes
Author, co-author :
Montanucci, Ludovica
Lewis-Smith, David
Collins, Ryan L.
Niestroj, Lisa-Marie
Parthasarathy, Shridhar
Xian, Julie
Ganesan, Shiva
Macnee, Marie
Brünger, Tobias
Thomas, Rhys H.
Talkowski, Michael
Krause, Roland ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
May, Patrick ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Fisher, R. S. et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 475–482 (2014). DOI: 10.1111/epi.12550
Fisher, R. S. et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 58, 522–530 (2017). DOI: 10.1111/epi.13670
Berg, A. T., Jallon, P. & Preux, P. M. The epidemiology of seizure disorders in infancy and childhood: definitions and classifications. Handb. Clin. Neurol. 111, 391–398 (2013). DOI: 10.1016/B978-0-444-52891-9.00043-9
Amiet, C. et al. Epilepsy in autism is associated with intellectual disability and gender: evidence from a meta-analysis. Biol. Psychiatry 64, 577–582 (2008). DOI: 10.1016/j.biopsych.2008.04.030
Sisodiya, S. M. & Mefford, H. C. Genetic contribution to common epilepsies. Curr. Opin. Neurol. 24, 140–145 (2011). DOI: 10.1097/WCO.0b013e328344062f
Lal, D. et al. Burden analysis of rare microdeletions suggests a strong impact of neurodevelopmental genes in genetic generalised epilepsies. PLoS Genet. 11, e1005226 (2015). DOI: 10.1371/journal.pgen.1005226
Heinzen, E. L. et al. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am. J. Hum. Genet. 86, 707–718 (2010). DOI: 10.1016/j.ajhg.2010.03.018
Addis, L. et al. Analysis of rare copy number variation in absence epilepsies. Neurol. Genet. 2, e56 (2016). DOI: 10.1212/NXG.0000000000000056
Mefford, H. C. CNVs in Epilepsy. Curr. Genet. Med. Rep. 2, 162–167 (2014). DOI: 10.1007/s40142-014-0046-6
Olson, H. et al. Copy number variation plays an important role in clinical epilepsy. Ann. Neurol. 75, 943–958 (2014). DOI: 10.1002/ana.24178
Dibbens, L. M. et al. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Hum. Mol. Genet. 18, 3626–3631 (2009). DOI: 10.1093/hmg/ddp311
de Kovel, C. G. F. et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain J. Neurol. 133, 23–32 (2010). DOI: 10.1093/brain/awp262
Pérez-Palma, E. et al. Heterogeneous contribution of microdeletions in the development of common generalised and focal epilepsies. J. Med. Genet. 54, 598–606 (2017). DOI: 10.1136/jmedgenet-2016-104495
Helbig, I. et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat. Genet. 41, 160–162 (2009). DOI: 10.1038/ng.292
Fortin, O. et al. Copy number variation in genetic epilepsy with febrile seizures plus. Eur. J. Paediatr. Neurol. 27, 111–115 (2020). DOI: 10.1016/j.ejpn.2020.05.005
Takumi, T. & Tamada, K. CNV biology in neurodevelopmental disorders. Curr. Opin. Neurobiol. 48, 183–192 (2018). DOI: 10.1016/j.conb.2017.12.004
Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015). DOI: 10.1016/j.neuron.2015.09.016
Leppa, V. M. et al. Rare inherited and de novo CNVs reveal complex contributions to ASD risk in multiplex families. Am. J. Hum. Genet. 99, 540–554 (2016). DOI: 10.1016/j.ajhg.2016.06.036
Pinto, D. et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am. J. Hum. Genet. 94, 677–694 (2014). DOI: 10.1016/j.ajhg.2014.03.018
Niestroj, L.-M. et al. Epilepsy subtype-specific copy number burden observed in a genome-wide study of 17458 subjects. Brain J. Neurol. 143, 2106–2118 (2020). DOI: 10.1093/brain/awaa171
Coppola, A. et al. Diagnostic implications of genetic copy number variation in epilepsy plus. Epilepsia 60, 689–706 (2019). DOI: 10.1111/epi.14683
Sheidley, B. R. et al. Genetic testing for the epilepsies: a systematic review. Epilepsia 63, 375–387 (2022). DOI: 10.1111/epi.17141
Okur, V. et al. Clinical and genomic characterization of 8p cytogenomic disorders. Genet. Med. 23, 2342–2351 (2021). DOI: 10.1038/s41436-021-01270-2
Riggs, E. R. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257 (2020). DOI: 10.1038/s41436-019-0686-8
Köhler, S. et al. The human phenotype ontology in 2021. Nucleic Acids Res. 49, D1207–D1217 (2021). DOI: 10.1093/nar/gkaa1043
Collins, R. L. et al. A cross-disorder dosage sensitivity map of the human genome. https://doi.org/10.1101/2021.01.26.21250098 (2021).
International League Against Epilepsy Consortium on Complex Epilepsies, Berkovic, S. F., Cavalleri, G. L. & Koeleman, B. P. Genome-wide meta-analysis of over 29,000 people with epilepsy reveals 26 loci and subtype-specific genetic architecture. https://doi.org/10.1101/2022.06.08.22276120 (2022).
Bielinska, B. et al. De novo deletions of SNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch. Nat. Genet. 25, 74–78 (2000). DOI: 10.1038/75629
Ohta, T. et al. Imprinting-mutation mechanisms in Prader-Willi syndrome. Am. J. Hum. Genet. 64, 397–413 (1999). DOI: 10.1086/302233
Li, H. et al. The autism-related gene SNRPN regulates cortical and spine development via controlling nuclear receptor Nr4a1. Sci. Rep. 6, 29878 (2016). DOI: 10.1038/srep29878
Grootjen, L. N., Juriaans, A. F., Kerkhof, G. F. & Hokken-Koelega, A. C. S. Atypical 15q11.2-q13 deletions and the Prader-Willi Phenotype. J. Clin. Med. 11, 4636 (2022). DOI: 10.3390/jcm11154636
Uddin, M. et al. OTUD7A regulates neurodevelopmental phenotypes in the 15q13.3 Microdeletion Syndrome. Am. J. Hum. Genet. 102, 278–295 (2018). DOI: 10.1016/j.ajhg.2018.01.006
Malwade, S. et al. Identification of vulnerable interneuron subtypes in 15q13.3 microdeletion syndrome using single-cell transcriptomics. Biol. Psychiatry 91, 727–739 (2022). DOI: 10.1016/j.biopsych.2021.09.012
Ravindra, V. M. et al. Rapid de novo aneurysm formation after clipping of a ruptured middle cerebral artery aneurysm in an infant with an MYH11 mutation. J. Neurosurg. Pediatr 18, 463–470 (2016). DOI: 10.3171/2016.5.PEDS16115
Keylock, A. et al. Moyamoya-like cerebrovascular disease in a child with a novel mutation in myosin heavy chain 11. Neurology 90, 136–138 (2018). DOI: 10.1212/WNL.0000000000004828
Steinlin, M. Cerebrovascular disorders in childhood. Handb. Clin. Neurol. 112, 1053–1064 (2013). DOI: 10.1016/B978-0-444-52910-7.00023-4
Kanemitsu, Y. et al. The RNA-binding protein MARF1 promotes cortical neurogenesis through its RNase activity domain. Sci. Rep. 7, 1155 (2017). DOI: 10.1038/s41598-017-01317-y
Jordan, V. K., Zaveri, H. P. & Scott, D. A. 1p36 deletion syndrome: an update. Appl. Clin. Genet. 8, 189–200 (2015).
White, J. et al. DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome. Am. J. Hum. Genet. 96, 612–622 (2015). DOI: 10.1016/j.ajhg.2015.02.015
Delplanque, J. et al. TMEM240 mutations cause spinocerebellar ataxia 21 with mental retardation and severe cognitive impairment. Brain J. Neurol. 137, 2657–2663 (2014). DOI: 10.1093/brain/awu202
Doyle, A. J. et al. Mutations in the TGF-β repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat. Genet. 44, 1249–1254 (2012). DOI: 10.1038/ng.2421
Wojcik, M. H. et al. De novo variant in KIF26B is associated with pontocerebellar hypoplasia with infantile spinal muscular atrophy. Am. J. Med. Genet. A. 176, 2623–2629 (2018). DOI: 10.1002/ajmg.a.40493
Landolfi, A., Barone, P. & Erro, R. The spectrum of PRRT2-associated disorders: update on clinical features and pathophysiology. Front. Neurol. 12, 629747 (2021). DOI: 10.3389/fneur.2021.629747
Richter, M. et al. Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling. Mol. Psychiatry 24, 1329–1350 (2019). DOI: 10.1038/s41380-018-0025-5
Lindy, A. S. et al. Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. Epilepsia 59, 1062–1071 (2018). DOI: 10.1111/epi.14074
Bonati, M. T. et al. 9q34.3 microduplications lead to neurodevelopmental disorders through EHMT1 overexpression. Neurogenetics 20, 145–154 (2019). DOI: 10.1007/s10048-019-00581-6
Fry, A. E. et al. De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain 141, 698–712 (2018). DOI: 10.1093/brain/awx358
Yagi, H. et al. Role of TBX1 in human del22q11.2 syndrome. Lancet Lond. Engl. 362, 1366–1373 (2003). DOI: 10.1016/S0140-6736(03)14632-6
Umeki, I. et al. Delineation of LZTR1 mutation-positive patients with Noonan syndrome and identification of LZTR1 binding to RAF1-PPP1CB complexes. Hum. Genet. 138, 21–35 (2019). DOI: 10.1007/s00439-018-1951-7
Baris, H. et al. Identification of a novel polymorphism-the duplication of the NPHP1 (nephronophthisis 1) gene. Am. J. Med. Genet. A. 140A, 1876–1879 (2006). DOI: 10.1002/ajmg.a.31390
Yasuda, Y. et al. Duplication of the NPHP1 gene in patients with autism spectrum disorder and normal intellectual ability: a case series. Ann. Gen. Psychiatry 13, 22 (2014). DOI: 10.1186/s12991-014-0022-2
Lerer, I. et al. Deletion of the ANKRD15 gene at 9p24.3 causes parent-of-origin-dependent inheritance of familial cerebral palsy. Hum. Mol. Genet. 14, 3911–3920 (2005). DOI: 10.1093/hmg/ddi415
Fink, J. K. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. 126, 307–328 (2013). DOI: 10.1007/s00401-013-1115-8
Reis, M. C. et al. A severe dementia syndrome caused by intron retention and cryptic splice site activation in STUB1 and exacerbated by TBP repeat expansions. Front. Mol. Neurosci. 15, 878236 (2022). DOI: 10.3389/fnmol.2022.878236
Chen, D.-H. et al. Heterozygous STUB1 missense variants cause ataxia, cognitive decline, and STUB1 mislocalization. Neurol. Genet. 6, 1–13 (2020). DOI: 10.1212/NXG.0000000000000397
Garber, H. R. et al. Incidence and impact of brain metastasis in patients with hereditary BRCA1 or BRCA2 mutated invasive breast cancer. NPJ Breast Cancer 8, 46 (2022). DOI: 10.1038/s41523-022-00407-z
Wang, B. et al. BRCA1-associated protein inhibits glioma cell proliferation and migration and glioma stem cell self-renewal via the TGF-β/PI3K/AKT/mTOR signalling pathway. Cell. Oncol. Dordr. 43, 223–235 (2020). DOI: 10.1007/s13402-019-00482-8
Mulkey, S. B. et al. Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ2 gain-of-function variants R201C and R201H. Epilepsia 58, 436–445 (2017). DOI: 10.1111/epi.13676
Miceli, F. et al. KCNQ2 R144 variants cause neurodevelopmental disability with language impairment and autistic features without neonatal seizures through a gain-of-function mechanism. EBioMedicine 81, 104130 (2022). DOI: 10.1016/j.ebiom.2022.104130
Davies, F. C. J. et al. Recapitulation of the EEF1A2 D252H neurodevelopmental disorder-causing missense mutation in mice reveals a toxic gain of function. Hum. Mol. Genet. 29, 1592–1606 (2020). DOI: 10.1093/hmg/ddaa042
Westfall, P. H. & Wolfinger, R. D. Multiple tests with discrete distributions. Am. Stat. 51, 3–8 (1997).
Scheffer, I. E. et al. ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia 58, 512–521 (2017). DOI: 10.1111/epi.13709
Golzio, C. et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 485, 363–367 (2012). DOI: 10.1038/nature11091
Barrow, E. et al. Colorectal cancer in HNPCC: cumulative lifetime incidence, survival and tumour distribution. A report of 121 families with proven mutations. Clin. Genet. 74, 233–242 (2008). DOI: 10.1111/j.1399-0004.2008.01035.x
McDonald, D. A. et al. A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum. Mol. Genet. 20, 211–222 (2011). DOI: 10.1093/hmg/ddq433
Whitney, R. et al. The spectrum of epilepsy in children with 15q13.3 microdeletion syndrome. Seizure 92, 221–229 (2021). DOI: 10.1016/j.seizure.2021.09.016
Strehlow, V. et al. Generalized epilepsy and myoclonic seizures in 22q11.2 deletion syndrome. Mol. Syndromol. 7, 239–246 (2016). DOI: 10.1159/000448445
Chen, J. et al. KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. Nature 557, 585–589 (2018). DOI: 10.1038/s41586-018-0128-9
Cleynen, I. et al. Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion. Mol. Psychiatry 26, 4496–4510 (2021). DOI: 10.1038/s41380-020-0654-3
Stefanski, A. et al. Identification and quantification of oligogenic loss-of-function disorders. Genet. Med. 24, 729–735 (2022). DOI: 10.1016/j.gim.2021.10.026
Manning, M. & Hudgins, L. Professional Practice and Guidelines Committee. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet. Med. 12, 742–745 (2010). DOI: 10.1097/GIM.0b013e3181f8baad
Miller, D. T. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86, 749–764 (2010). DOI: 10.1016/j.ajhg.2010.04.006
Stosic, M., Levy, B. & Wapner, R. The use of chromosomal microarray analysis in prenatal diagnosis. Obstet. Gynecol. Clin. North Am. 45, 55–68 (2018). DOI: 10.1016/j.ogc.2017.10.002
Mefford, H. C. et al. Rare copy number variants are an important cause of epileptic encephalopathies. Ann. Neurol. 70, 974–985 (2011). DOI: 10.1002/ana.22645
Mullen, S. A. et al. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology 81, 1507–1514 (2013). DOI: 10.1212/WNL.0b013e3182a95829
Reinthaler, E. M. et al. 16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy. Hum. Mol. Genet. 23, 6069–6080 (2014). DOI: 10.1093/hmg/ddu306
Skotte, L. et al. Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes. Brain J. Neurol. 145, 555–568 (2022). DOI: 10.1093/brain/awab260
International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat. Commun. 9, 5269 (2018). DOI: 10.1038/s41467-018-07524-z
Harden, C. et al. Practice Guideline Summary: Sudden Unexpected Death in Epilepsy Incidence Rates and Risk Factors: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Epilepsy Curr. 17, 180–187 (2017). DOI: 10.5698/1535-7511.17.3.180
Lewis-Smith, D. et al. Computational analysis of neurodevelopmental phenotypes: Harmonization empowers clinical discovery. Hum. Mutat. 10.1002/humu.24389 (2022).
Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015). DOI: 10.1038/nature15394
Brandler, W. M. et al. Frequency and complexity of de novo structural mutation in autism. Am. J. Hum. Genet. 98, 667–679 (2016). DOI: 10.1016/j.ajhg.2016.02.018
Gymrek, M. et al. Abundant contribution of short tandem repeats to gene expression variation in humans. Nat. Genet. 48, 22–29 (2016). DOI: 10.1038/ng.3461
Vervoort, L. & Vermeesch, J. R. The 22q11.2 low copy repeats. Genes 13, 2101 (2022). DOI: 10.3390/genes13112101
Gimelli, G. et al. Genomic inversions of human chromosome 15q11-q13 in mothers of Angelman syndrome patients with class II (BP2/3) deletions. Hum. Mol. Genet. 12, 849–858 (2003). DOI: 10.1093/hmg/ddg101
González, J. R. et al. A common 16p11.2 inversion underlies the joint susceptibility to asthma and obesity. Am. J. Hum. Genet. 94, 361–372 (2014). DOI: 10.1016/j.ajhg.2014.01.015
Porubsky, D. et al. Inversion polymorphism in a complete human genome assembly. 10.1101/2022.10.06.511148 (2022).
Liao, W.-W. et al. A Draft Human Pangenome Reference. https://doi.org/10.1101/2022.07.09.499321 (2022).
Berg, A. T. et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51, 676–685 (2010). DOI: 10.1111/j.1528-1167.2010.02522.x
Borodulin, K. et al. Cohort Profile: The National FINRISK Study. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyx239 (2017).
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015). DOI: 10.1186/s13742-015-0047-8
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011). DOI: 10.1016/j.ajhg.2010.11.011
1000 Genomes Project Consortium. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015). DOI: 10.1038/nature15393
Wang, K. et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17, 1665–1674 (2007). DOI: 10.1101/gr.6861907
Lee, C. M. et al. UCSC Genome Browser enters 20th year. Nucleic Acids Res. 48, D756–D761 (2020).
Bragin, E. et al. DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res. 42, D993–D1000 (2014). DOI: 10.1093/nar/gkt937
Collins, R. L. et al. A cross-disorder dosage sensitivity map of the human genome. Cell 185, 3041–3055.e25 (2022). DOI: 10.1016/j.cell.2022.06.036
Köhler, S. et al. Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res. 47, D1018–D1027 (2019). DOI: 10.1093/nar/gky1105
Abel, H. J. et al. Mapping and characterization of structural variation in 17,795 human genomes. Nature 583, 83–89 (2020). DOI: 10.1038/s41586-020-2371-0
Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020). DOI: 10.1038/s41586-020-2287-8
Sweeting, M. J., Sutton, A. J. & Lambert, P. C. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat. Med. 23, 1351–1375 (2004). DOI: 10.1002/sim.1761
Wakefield, J. Bayes factors for genome-wide association studies: comparison with P-values. Genet. Epidemiol. 33, 79–86 (2009). DOI: 10.1002/gepi.20359
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016). DOI: 10.1093/nar/gkw377
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013). DOI: 10.1186/1471-2105-14-128
Epi25 Collaborative. Ultra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals. Am. J. Hum. Genet. 105, 267–282 (2019). DOI: 10.1016/j.ajhg.2019.05.020
Villar, J. et al. The likeness of fetal growth and newborn size across non-isolated populations in the INTERGROWTH-21st Project: the Fetal Growth Longitudinal Study and Newborn Cross-Sectional Study. Lancet Diabetes Endocrinol. 2, 781–792 (2014). DOI: 10.1016/S2213-8587(14)70121-4
Lewis-Smith, D. et al. Modeling seizures in the Human Phenotype Ontology according to contemporary ILAE concepts makes big phenotypic data tractable. Epilepsia 62, 1293–1305 (2021). DOI: 10.1111/epi.16908
Greene, D., Richardson, S. & Turro, E. ontologyX: a suite of R packages for working with ontological data. Bioinforma. Oxf. Engl. 33, 1104–1106 (2017). DOI: 10.1093/bioinformatics/btw763