bladder cancer; urology; drug discovery; drug repurposing; data driven
Abstract :
[en] Delivering better care for patients with bladder cancer (BC) necessitates the development of novel therapeutic strategies that address both the high disease heterogeneity and the limitations of the current therapeutic modalities, such as drug low efficacy and patient resistance acquisition. Drug repurposing is a cost-effective strategy that targets the reuse of existing drugs for new therapeutic purposes. Such a strategy could open new avenues toward more effective BC treatment. BC patients' multi-omics signatures can be used to guide the investigation of existing drugs that show an effective therapeutic potential through drug repurposing. In this book chapter, we present an integrated multilayer approach that includes cross-omics analyses from publicly available transcriptomics and proteomics data derived from BC tissues and cell lines that were investigated for the development of disease-specific signatures. These signatures are subsequently used as input for a signature-based repurposing approach using the Connectivity Map (CMap) tool. We further explain the steps that may be followed to identify and select existing drugs of increased potential for repurposing in BC patients.
Research center :
Mosaiques Diagnostics
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Mokou, Marika ✱; Mosaiques Diagnostics > Department of Biomarker Research
NARAYANASAMY, Shaman ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Stroggilos, Rafael; Academy of Athens > Systems Biology Center
BALAUR, Irina-Afrodita ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Vlahou, Antonia; Academy of Athens > Systems Biology Center
Mischak, Harald; Mosaiques Diagnostics > Department of Biomarker Research
Frantzi, Maria; Mosaiques Diagnostics > Department of Biomarker Research
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
A Drug Repurposing Pipeline Based on Bladder Cancer Integrated Proteotranscriptomics Signatures
Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality world-wide for 36 cancers in 185 countries. CA Cancer J Clin 71(3): 209-249
Leal J, Luengo-Fernandez R, Sullivan R et al (2016) Economic burden of bladder cancer across the European Union. Eur Urol 69(3): 438-447
Mossanen M, Gore JL (2014) The burden of bladder cancer care: direct and indirect costs. Curr Opin Urol 24(5): 487-491
Messing EM (2018) Financial toxicity of hav-ing bladder cancer. Bladder Cancer 4(3): 351-352
Babjuk M, Burger M, Capoun O et al (2022) European Association of Urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ). Eur Urol 81(1): 75-94
Knowles MA, Hurst CD (2015) Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer 15(1): 25-41
Yassaie O, Chehroudi C, Black PC (2021) Novel and emerging approaches in the man-agement of non-muscle invasive urothelial carcinoma. Ther Adv Med Oncol 13: 17588359211039052
Witjes JA, Bruins HM, Cathomas R et al (2021) European Association of Urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guide-lines. Eur Urol 79(1): 82-104
Lopez-Beltran A, Cimadamore A, Blanca A et al (2021) Immune checkpoint inhibitors for the treatment of bladder cancer. Cancers (Basel) 13(1): 131
Wu Z, Chen Q, Qu L et al (2022) Adverse events of immune checkpoint inhibitors ther-apy for urologic cancer patients in clinical trials: a collaborative systematic review and meta-analysis. Eur Urol 81(4): 414-425
Sjodahl G, Lauss M, Lovgren K et al (2012) A molecular taxonomy for urothelial carcinoma. Clin Cancer Res 18(12): 3377-3386
Hurst CD, Alder O, Platt FM et al (2017) Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation fre-quency. Cancer Cell 32(5): 701-715 e707
Stroggilos R, Frantzi M, Zoidakis J et al (2022) Gene expression monotonicity across bladder cancer stages informs on the molecular pathogenesis and identifies a prog-nostic eight-Gene signature. Cancers (Basel) 14(10): 2542
Lindskrog SV, Prip F, Lamy P et al (2021) An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer. Nat Commun 12(1): 2301
Fong MHY, Feng M, McConkey DJ et al (2020) Update on bladder cancer molecular subtypes. Transl Androl Urol 9(6): 2881-2889
Lavallee E, Sfakianos JP, Mulholland DJ (2021) Tumor heterogeneity and conse-quences for bladder cancer treatment. Can-cers (Basel) 13(21): 5297
Pushpakom S, Iorio F, Eyers PA et al (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18(1): 41-58
Zhang Z, Zhou L, Xie N et al (2020) Over-coming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther 5(1): 113
Pillaiyar T, Meenakshisundaram S, Manickam M et al (2020) A medicinal chemistry perspec-tive of drug repositioning: recent advances and challenges in drug discovery. Eur J Med Chem 195: 112275
Wong CH, Siah KW, Lo AW (2019) Estima-tion of clinical trial success rates and related parameters. Biostatistics 20(2): 273-286
Turanli B, Grotli M, Boren J et al (2018) Drug repositioning for effective prostate can-cer treatment. Front Physiol 9: 500
Cha Y, Erez T, Reynolds IJ et al (2018) Drug repurposing from the perspective of pharma-ceutical companies. Br J Pharmacol 175(2): 168-180
Hurle MR, Yang L, Xie Q et al (2013) Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther 93(4): 335-341
Jarada TN, Rokne JG, Alhajj R (2020) A review of computational drug repositioning: strategies, approaches, opportunities, chal-lenges, and directions. J Chem 12(1): 46
Frantzi M, Latosinska A, Mokou M et al (2020) Drug repurposing in oncology. Lancet Oncol 21(12): e543
Lamb J, Crawford ED, Peck D et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795): 1929-1935
Subramanian A, Narayan R, Corsello SM et al (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 pro-files. Cell 171(6): 1437-1452 e1417
Issa NT, Stathias V, Schurer S et al (2020) Machine and deep learning approaches for cancer drug repurposing. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.12.011
Klein J, Caubet C, Camus M et al (2020) Connectivity mapping of glomerular proteins identifies dimethylaminoparthenolide as a new inhibitor of diabetic kidney disease. Sci Rep 10(1): 14898
Schanstra JP, Luong TT, Makridakis M et al (2019) Systems biology identifies cytosolic PLA2 as a target in vascular calcification treat-ment. JCI Insight 4(10): e125638
Ganci F, Pulito C, Valsoni S et al (2020) PI3K inhibitors curtail MYC-dependent mutant p53 gain-of-function in head and neck squa-mous cell carcinoma. Clin Cancer Res 26(12): 2956-2971
Mokou M, Lygirou V, Angelioudaki I et al (2020) A novel pipeline for drug repurposing for bladder cancer based on patients’ omics signatures. Cancers (Basel) 12(12): 3519
Uhlen M, Hallstrom BM, Lindskog C et al (2016) Transcriptomics resources of human tissues and organs. Mol Syst Biol 12(4): 862
Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer geno-mics and clinical profiles using the cBioPortal. Sci Signal 6(269): pl1
Colaprico A, Silva TC, Olsen C et al (2016) TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 44(8): e71
Carvalho BS, Irizarry RA (2010) A framework for oligonucleotide microarray preprocessing. Bioinformatics 26(19): 2363-2367
Kulvait V (2022) Blima: tools for the prepro-cessing and analysis of the illumina microar-rays on the detector (bead) level. R package version 1.30.0. https://bitbucket.org/kulvait/blima
Lin SM, Du P, Huber W et al (2008) Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res 36(2): e11
Du P, Kibbe WA, Lin SM (2008) Lumi: a pipeline for processing Illumina microarray. Bioinformatics 24(13): 1547-1548
Patel H, Ewels P, Peltzer A et al (2022) nf-core/ rnaseq: nf-core/rnaseq v3.8.1-plastered mag-nesium mongoose. Zenodo, Geneva
Köster J, Forster J, Schmeier S et al (2021) Snakemake-workflows/rna-seq-star-deseq2: version 1.2.0. Zenodo, Geneva
Love MI, Huber W, Anders S (2014) Moder-ated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12): 550
Chen Y, Lun AT, Smyth GK (2016) From reads to genes to pathways: differential expression analysis of RNA-seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res 5: 1438
Chiesa M, Colombo GI, Piacentini L (2018) DaMiRseq-an R/bioconductor package for data mining of RNA-seq data: normalization, feature selection and classification. Bioinfor-matics 34(8): 1416-1418
Goksuluk D, Zararsiz G, Korkmaz S et al (2019) MLSeq: machine learning interface for RNA-sequencing data. Comput Methods Prog Biomed 175: 223-231
Di Tommaso P, Chatzou M, Floden EW et al (2017) Nextflow enables reproducible computational workflows. Nat Biotechnol 35(4): 316-319
Amstutz P, Crusoe MR, Tijanić N, et al (2016) Common Workflow Language, v1.0
Crusoe MR, Abeln S, Iosup A et al (2022) Methods included: standardizing computa-tional reuse and portability with the common workflow language. Commun ACM 65(6): 54-63
Deutsch EW, Bandeira N, Sharma V et al (2020) The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res 48(D1): D1145-D1152
Tyanova S, Temu T, Sinitcyn P et al (2016) The perseus computational platform for com-prehensive analysis of (prote)omics data. Nat Methods 13(9): 731-740
Chong J, Soufan O, Li C et al (2018) Meta-boAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1): W486-W494
Zhang X, Smits AH, van Tilburg GB et al (2018) Proteome-wide identification of ubi-quitin interactions using UbIA-MS. Nat Pro-toc 13(3): 530-550
Pinero J, Ramirez-Anguita JM, Sauch-Pitarch J et al (2020) The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 48(D1): D845-D855
Davis AP, Grondin CJ, Johnson RJ et al (2019) The comparative toxicogenomics database: update 2019. Nucleic Acids Res 47(D1): D948-D954
Tamborero D, Rubio-Perez C, Deu-Pons J et al (2018) Cancer genome interpreter anno-tates the biological and clinical relevance of tumor alterations. Genome Med 10(1): 25
Biryukov M, Groues V, Satagopam V, et al (2018) BioKB-text mining and semantic technologies for biomedical content discov-ery. Semantic Web Applications and Tools for Healthcare and Life Sciences Journal contribution
Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1): 1-13
Cirillo E, Parnell LD, Evelo CT (2017) A review of pathway-based analysis tools that visualize genetic variants. Front Genet 8: 174
Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102(43): 15545-15550
Mootha VK, Lindgren CM, Eriksson K-F et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3): 267-273
Fabregat A, Jupe S, Matthews L et al (2018) The reactome pathway knowledgebase. Nucleic Acids Res 46(D1): D649-D655
Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(Database issue): D109-D114
Gene Ontology C (2021) The Gene ontology resource: enriching a GOld mine. Nucleic Acids Res 49(D1): D325-D334
Ochoa D, Hercules A, Carmona M et al (2021) Open targets platform: supporting systematic drug-target identification and prioritisation. Nucleic Acids Res 49(D1): D1302-D1310
Poli-Neto OB, Meola J, Rosa ESJC et al (2020) Transcriptome meta-analysis reveals differences of immune profile between euto-pic endometrium from stage I-II and III-IV endometriosis independently of hormonal milieu. Sci Rep 10(1): 313
Athar A, Fullgrabe A, George N et al (2019) ArrayExpress update-from bulk to single-cell expression data. Nucleic Acids Res 47(D1): D711-D715
Davis S, Meltzer PS (2007) GEOquery: a bridge between the Gene Expression Omni-bus (GEO) and BioConductor. Bioinformat-ics 23(14): 1846-1847
Morgan M, Obenchain V, Hester J, et al (2022) Summarized Experiment: Summarized Experiment container. Rpackage version 1273
Zhu Y, Davis S, Stephens R et al (2008) GEO-metadb: powerful alternative search engine for the Gene Expression Omnibus. Bioinfor-matics 24(23): 2798-2800
Nellore A, Collado-Torres L, Jaffe AE et al (2017) Rail-RNA: scalable analysis of RNA-seq splicing and coverage. Bioinformat-ics 33(24): 4033-4040
Team RC (2013) R: a language and environ-ment for statistical computing. R Foundation for Statistical Computing, Vienna
Durinck S, Spellman PT, Birney E et al (2009) Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nat Protoc 4(8): 1184-1191
Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559
Poli-Neto OB, Meola J, Rosa-e-Silva JC et al (2020) Transcriptome meta-analysis reveals differences of immune profile between euto-pic endometrium from stage I-II and III-IV endometriosis independently of hormonal milieu. Sci Rep 10(1): 313
Leek JT, Johnson WE, Parker HS et al (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28(6): 882-883
Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expres-sion data using empirical Bayes methods. Bio-statistics 8(1): 118-127
Zhang Y, Parmigiani G, Johnson WE (2020) ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom Bioinform 2(3): lqaa078
Zhang X, Ye Z, Chen J et al (2022) AMDB-Norm: an approach based on distribution adjustment to eliminate batch effects of gene expression data. Brief Bioinform 23(1): bbab528
Ju JH, Shenoy SA, Crystal RG et al (2017) An independent component analysis confound-ing factor correction framework for identify-ing broad impact expression quantitative trait loci. PLoS Comput Biol 13(5): e1005537
Pearson K (1901) LIII. On lines and planes of closest fit to systems of points in space. University College, London
Li J, Bushel PR, Chu T-M et al (2009) Principal variance components analysis: estimating batch effects in microarray gene expression data. In: Batch effects and noise in microarray experiments. Wiley, Chichester, pp 141-154
Manimaran S, Selby HM, Okrah K et al (2016) BatchQC: interactive software for evaluating sample and batch effects in geno-mic data. Bioinformatics 32(24): 3836-3838
Ritchie ME, Phipson B, Wu D et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7): e47
Robbins HE (1992) An empirical Bayes approach to statistics. In: Kotz S, Johnson NL (eds) Breakthroughs in statistics: founda-tions and basic theory, Springer series in sta-tistics. Springer, New York, pp 388-394
Tyanova S, Temu T, Cox J (2016) The Max-Quant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12): 2301-2319
Halder A, Verma A, Biswas D et al (2021) Recent advances in mass-spectrometry based proteomics software, tools and databases. Drug Discov Today Technol 39: 69-79
Yang Z, Michailidis G (2016) A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data. Bioinformatics 32(1): 1-8
Lock EF, Hoadley KA, Marron JS et al (2013) Joint and individual variation explained (Jive) for integrated analysis of multiple data types. Ann Appl Stat 7(1): 523-542
Ray P, Zheng L, Lucas J et al (2014) Bayesian joint analysis of heterogeneous genomics data. Bioinformatics 30(10): 1370-1376
Shen R, Olshen AB, Ladanyi M (2009) Inte-grative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25(22): 2906-2912
Argelaguet R, Velten B, Arnol D et al (2018) Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol 14(6): e8124
Kirk P, Griffin JE, Savage RS et al (2012) Bayesian correlated clustering to integrate multiple datasets. Bioinformatics 28(24): 3290-3297
Yuan Y, Savage RS, Markowetz F (2011) Patient-specific data fusion defines prognostic cancer subtypes. PLoS Comput Biol 7(10): e1002227
Savage RS, Ghahramani Z, Griffin JE et al (2010) Discovering transcriptional modules by Bayesian data integration. Bioinformatics 26(12): i158-i167
Gabasova E, Reid J, Wernisch L (2017) Clus-ternomics: integrative context-dependent clustering for heterogeneous datasets. PLoS Comput Biol 13(10): e1005781
Vaske CJ, Benz SC, Sanborn JZ et al (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26(12): i237-i245
Wei W, Sun Z, da Silveira WA et al (2019) Semi-supervised identification of cancer sub-groups using survival outcomes and overlap-ping grouping information. Stat Methods Med Res 28(7): 2137-2149
Wang B, Mezlini AM, Demir F et al (2014) Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 11(3): 333-337
Ma T, Zhang A (2018) Affinity network fusion and semi-supervised learning for can-cer patient clustering. Methods 145: 16-24
Kim D, Li R, Dudek SM et al (2013) ATHENA: identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammat-ical evolution neural network. BioData Min 6(1): 23
Jeong HH, Leem S, Wee K et al (2015) Inte-grative network analysis for survival-associated gene-gene interactions across mul-tiple genomic profiles in ovarian cancer. J Ovarian Res 8: 42
Speicher NK, Pfeifer N (2015) Integrating different data types by regularized unsuper-vised multiple kernel learning with application to cancer subtype discovery. Bioinformatics 31(12): i268-i275
Liao L, Li K, Li K et al (2018) A multiple kernel density clustering algorithm for incom-plete datasets in bioinformatics. BMC Syst Biol 12(Suppl 6): 111
Seoane JA, Day IN, Gaunt TR et al (2014) A pathway-based data integration framework for prediction of disease progression. Bioin-formatics 30(6): 838-845
Guo Y, Zheng J, Shang X et al (2018) A similarity regression fusion model for inte-grating multi-omics data to identify cancer subtypes. Genes (Basel) 9(7): 314
Louhimo R, Hautaniemi S (2011) CNAmet: an R package for integrating copy number, methylation and expression data. Bioinfor-matics 27(6): 887-888
Chari R, Coe BP, Vucic EA et al (2010) An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer. BMC Syst Biol 4: 67
Ovaska K, Laakso M, Haapa-Paananen S et al (2010) Large-scale data integration frame-work provides a comprehensive view on glio-blastoma multiforme. Genome Med 2(9): 65
Rohart F, Eslami A, Matigian N et al (2017) MINT: a multivariate integrative method to identify reproducible molecular signatures across independent experiments and platforms. BMC Bioinformatics 18(1): 128
Rohart F, Gautier B, Singh A et al (2017) mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol 13(11): e1005752
Reimand J, Isserlin R, Voisin V et al (2019) Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, Cytos-cape and EnrichmentMap. Nat Protoc 14(2): 482-517
Jackson M, Kavoussanakis K, Wallace EWJ (2021) Using prototyping to choose a bioin-formatics workflow management system. PLoS Comput Biol 17(2): e1008622
Deutsch EW, Mendoza L, Shteynberg D et al (2015) Trans-proteomic pipeline, a standar-dized data processing pipeline for large-scale reproducible proteomics informatics. Proteo-mics Clin Appl 9(7-8): 745-754
Tran NH, Qiao R, Xin L et al (2019) Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nat Methods 16(1): 63-66
Tanner S, Shu H, Frank A et al (2005) InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal Chem 77(14): 4626-4639
Tabb DL, Ma ZQ, Martin DB et al (2008) DirecTag: accurate sequence tags from pep-tide MS/MS through statistical scoring. J Proteome Res 7(9): 3838-3846
Wang X, Li Y, Wu Z et al (2014) JUMP: a tag-baseddatabasesearchtoolforpeptideiden-tification with high sensitivity and accuracy. Mol Cell Proteomics 13(12): 3663-3673
Cifani P, Dhabaria A, Chen Z et al (2018) ProteomeGenerator: a framework for com-prehensive proteomics based on de novo tran-scriptome assembly and high-accuracy peptide mass spectral matching. J Proteome Res 17(11): 3681-3692
Maglott D, Ostell J, Pruitt KD et al (2005) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 33(Database issue): D54-D58
UniProt C (2021) UniProt: the universal pro-tein knowledgebase in 2021. Nucleic Acids Res 49(D1): D480-D489
Piñero J, Ramíŕez-Anguita JM, Saüch-Pitarch J et al (2020) The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 48(D1): D845-D855
Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1): 44-57
Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 41(Database issue): D991-D995
Kuleshov MV, Jones MR, Rouillard AD et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1): W90-W97
Cunningham F, Achuthan P, Akanni W et al (2019) Ensembl 2019. Nucleic Acids Res 47(D1): D745-D751
Raudvere U, Kolberg L, Kuzmin I et al (2019) g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47(W1): W191-W198
Kutmon M, Riutta A, Nunes N et al (2016) WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res 44(D1): D488-D494
Streit M, Lex A, Kalkusch M et al (2009) Caleydo: connecting pathways and gene expression. Bioinformatics (Oxford, Eng-land) 25(20): 2760-2761
Daley D, Lemire M, Akhabir L et al (2009) Analyses of associations with asthma in four asthma population samples from Canada and Australia. Hum Genet 125(4): 445-459
Zamar D, Tripp B, Ellis G et al (2009) Path: a tool to facilitate pathway-based genetic asso-ciation analysis. Bioinformatics (Oxford, Eng-land) 25(18): 2444-2446
Kutmon M, Iersel MP, Bohler A et al (2015) PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput Biol 11(2): e1004085
Krämer A, Green J, Pollard J et al (2014) Causal analysis approaches in ingenuity path-way analysis. Bioinformatics 30(4): 523-530
Kotelnikova E, Frahm KM, Lages J et al (2022) Statistical properties of the MetaCore network of protein-protein interactions. Appl Netw Sci 7(1): 1-18