Bruner E. Geometric morphometrics and paleoneurology: Brain shape evolution in the genus Homo J. Hum. Evol. 2004 47 279 303 10.1016/j.jhevol.2004.03.009 15530349
Gunz P. Neubauer S. Maureille B. Hublin J.-J. Brain development after birth differs between Neanderthals and modern humans Curr. Biol. 2010 20 R921 R922 10.1016/j.cub.2010.10.018 21056830
Boeckx C.A. Benítez-Burraco A. The shape of the human language-ready brain Front. Psychol. 2014 5 282 10.3389/fpsyg.2014.00282 24772099
Valenti M.T. Dalle Carbonare L. Mottes M. Osteogenic differentiation in healthy and pathological conditions Int. J. Mol. Sci. 2016 18 41 10.3390/ijms18010041 28035992
Adugna D.G. Aragie H. Kibret A.A. Belay D.G. Therapeutic Application of Stem Cells in the Repair of Traumatic Brain Injury Stem Cells Cloning Adv. Appl. 2022 15 53 10.2147/SCCAA.S369577 35859889
Yang Y. Zhou J. Liang C. Xiao Q. Chen Y. Yu B. Effects of highly selective sensory/motor nerve injury on bone metabolism and bone remodeling in rats J. Musculoskelet. Neuronal Interact. 2022 22 524 535
Catalano A. Martino G. Bellone F. Gaudio A. Lasco C. Langher V. Lasco A. Morabito N. Anxiety levels predict fracture risk in postmenopausal women assessed for osteoporosis Menopause 2018 25 1110 1115 10.1097/GME.0000000000001123
Kelly R.R. McDonald L.T. Jensen N.R. Sidles S.J. LaRue A.C. Impacts of psychological stress on osteoporosis: Clinical implications and treatment interactions Front. Psychiatry 2019 10 200 10.3389/fpsyt.2019.00200
Haider I.T. Lobos S.M. Simonian N. Schnitzer T.J. Edwards W.B. Bone fragility after spinal cord injury: Reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time Osteoporos. Int. 2018 29 2703 2715 10.1007/s00198-018-4733-0
Malochet-Guinamand S. Durif F. Thomas T. Parkinson’s disease: A risk factor for osteoporosis Jt. Bone Spine 2015 82 406 410 10.1016/j.jbspin.2015.03.009
Kang H.G. Park H.Y. Ryu H.U. Suk S.-H. Bone mineral loss and cognitive impairment: The PRESENT project Medicine 2018 97 e12755 10.1097/MD.0000000000012755
Poewe W. Seppi K. Tanner C.M. Halliday G.M. Brundin P. Volkmann J. Schrag A.-E. Lang A.E. Parkinson disease Nat. Rev. Dis. Prim. 2017 3 17013 10.1038/nrdp.2017.13
Yuan J. Meloni B.P. Shi T. Bonser A. Papadimitriou J.M. Mastaglia F.L. Zhang C. Zheng M. Gao J. The potential influence of bone-derived modulators on the progression of Alzheimer’s disease J. Alzheimer’s Dis. 2019 69 59 70 10.3233/JAD-181249
Torsney K.M. Noyce A.J. Doherty K.M. Bestwick J.P. Dobson R. Lees A.J. Bone health in Parkinson’s disease: A systematic review and meta-analysis J. Neurol. Neurosurg. Psychiatry 2014 85 1159 1166 10.1136/jnnp-2013-307307
Huat T.J. Camats-Perna J. Newcombe E.A. Valmas N. Kitazawa M. Medeiros R. Metal toxicity links to Alzheimer’s disease and neuroinflammation J. Mol. Biol. 2019 431 1843 1868 10.1016/j.jmb.2019.01.018
Dalle Carbonare L. Valenti M.T. Del Forno F. Caneva E. Pietrobelli A. Vitamin D: Daily vs. monthly use in children and elderly—What is going on? Nutrients 2017 9 652 10.3390/nu9070652
Moretti R. Morelli M.E. Caruso P. Vitamin D in neurological diseases: A rationale for a pathogenic impact Int. J. Mol. Sci. 2018 19 2245 10.3390/ijms19082245
Zhou Z. Zhou R. Zhang Z. Li K. The association between vitamin D status, vitamin D supplementation, sunlight exposure, and Parkinson’s disease: A systematic review and meta-analysis Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019 25 666 10.12659/MSM.912840
Wu H. Pang Q. The effect of vitamin D and calcium supplementation on falls in older adults Der Orthopäde 2017 46 729 736 10.1007/s00132-017-3446-y 28718008
Bahi-Buisson N. Nectoux J. Rosas-Vargas H. Milh M. Boddaert N. Girard B. Cances C. Ville D. Afenjar A. Rio M. Key clinical features to identify girls with CDKL5 mutations Brain 2008 131 2647 2661 10.1093/brain/awn197 18790821
Fehr S. Wilson M. Downs J. Williams S. Murgia A. Sartori S. Vecchi M. Ho G. Polli R. Psoni S. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy Eur. J. Hum. Genet. 2013 21 266 273 10.1038/ejhg.2012.156 22872100
Varela T. Varela D. Martins G. Conceição N. Cancela M.L. Cdkl5 mutant zebrafish shows skeletal and neuronal alterations mimicking human CDKL5 deficiency disorder Sci. Rep. 2022 12 9325 10.1038/s41598-022-13364-1 35665761
Cheishvili D. Parashar S. Mahmood N. Arakelian A. Kremer R. Goltzman D. Szyf M. Rabbani S.A. Identification of an epigenetic signature of osteoporosis in blood DNA of postmenopausal women J. Bone Miner. Res. 2018 33 1980 1989 10.1002/jbmr.3527
Pontikoglou C. Deschaseaux F. Sensebé L. Papadaki H.A. Bone marrow mesenchymal stem cells: Biological properties and their role in hematopoiesis and hematopoietic stem cell transplantation Stem Cell Rev. Rep. 2011 7 569 589 10.1007/s12015-011-9228-8
Hwang N.S. Zhang C. Hwang Y.S. Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine Wiley Interdiscip. Rev. Syst. Biol. Med. 2009 1 97 106 10.1002/wsbm.26
Deng Q. Li P. Che M. Liu J. Biswas S. Ma G. He L. Wei Z. Zhang Z. Yang Y. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin Elife 2019 8 e50208 10.7554/eLife.50208
Vega O.A. Lucero C.M. Araya H.F. Jerez S. Tapia J.C. Antonelli M. Salazar-Onfray F. Las Heras F. Thaler R. Riester S.M. Wnt/β-catenin signaling activates expression of the bone-related transcription factor RUNX2 in select human osteosarcoma cell types J. Cell. Biochem. 2017 118 3662 3674 10.1002/jcb.26011
Zhao X. Tang L. Le T.P. Nguyen B.H. Chen W. Zheng M. Yamaguchi H. Dawson B. You S. Martinez-Traverso I.M. Yap and Taz promote osteogenesis and prevent chondrogenesis in neural crest cells in vitro and in vivo Sci. Signal. 2022 15 eabn9009 10.1126/scisignal.abn9009
Dalle Carbonare L. Antoniazzi F. Gandini A. Orsi S. Bertacco J. Li Vigni V. Minoia A. Griggio F. Perduca M. Mottes M. Two Novel C-Terminus RUNX2 Mutations in Two Cleidocranial Dysplasia (CCD) Patients Impairing p53 Expression Int. J. Mol. Sci. 2021 22 10336 10.3390/ijms221910336
Valenti M.T. Mottes M. Cheri S. Deiana M. Micheletti V. Cosaro E. Davì M.V. Francia G. Dalle Carbonare L. Runx2 overexpression compromises bone quality in acromegalic patients Endocr.-Relat. Cancer 2018 25 269 277 10.1530/ERC-17-0523
Stein G.S. Lian J.B. Van Wijnen A.J. Stein J.L. Montecino M. Javed A. Zaidi S.K. Young D.W. Choi J.-Y. Pockwinse S.M. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression Oncogene 2004 23 4315 4329 10.1038/sj.onc.1207676
Depew M.J. Liu J.K. Long J.E. Presley R. Meneses J.J. Pedersen R.A. Rubenstein J. Dlx5 regulates regional development of the branchial arches and sensory capsules Development 1999 126 3831 3846 10.1242/dev.126.17.3831
Boeckx C. Benítez-Burraco A. Osteogenesis and neurogenesis: A robust link also for language evolution Front. Cell. Neurosci. 2015 9 291 10.3389/fncel.2015.00291
Pleasure S.J. Anderson S. Hevner R. Bagri A. Marin O. Lowenstein D.H. Rubenstein J.L. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons Neuron 2000 28 727 740 10.1016/S0896-6273(00)00149-5
Benes F.M. Lim B. Matzilevich D. Walsh J.P. Subburaju S. Minns M. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars Proc. Natl. Acad. Sci. USA 2007 104 10164 10169 10.1073/pnas.0703806104
Reale M.E. Webb I.C. Wang X. Baltazar R.M. Coolen L.M. Lehman M.N. The transcription factor Runx2 is under circadian control in the suprachiasmatic nucleus and functions in the control of rhythmic behavior PLoS ONE 2013 8 e54317 10.1371/journal.pone.0054317
Talkowski M.E. Rosenfeld J.A. Blumenthal I. Pillalamarri V. Chiang C. Heilbut A. Ernst C. Hanscom C. Rossin E. Lindgren A.M. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries Cell 2012 149 525 537 10.1016/j.cell.2012.03.028
Ruzicka W.B. Subburaju S. Benes F.M. Circuit-and diagnosis-specific DNA methylation changes at γ-aminobutyric acid–related genes in postmortem human hippocampus in schizophrenia and bipolar disorder JAMA Psychiatry 2015 72 541 551 10.1001/jamapsychiatry.2015.49
Jeong J.H. Jin J.S. Kim H.N. Kang S.M. Liu J.C. Lengner C.J. Otto F. Mundlos S. Stein J.L. Van Wijnen A.J. Expression of Runx2 transcription factor in non-skeletal tissues, sperm and brain J. Cell. Physiol. 2008 217 511 517 10.1002/jcp.21524 18636555
Subburaju S. Benes F.M. Induction of the GABA cell phenotype: An in vitro model for studying neurodevelopmental disorders PLoS ONE 2012 7 e33352 10.1371/journal.pone.0033352 22457755
Valenti M.T. Serafini P. Innamorati G. Gili A. Cheri S. Bassi C. Dalle Carbonare L. Runx2 expression: A mesenchymal stem marker for cancer Oncol. Lett. 2016 12 4167 4172 10.3892/ol.2016.5182 27895787
Schroeter M. Zickler P. Denhardt D.T. Hartung H.-P. Jander S. Increased thalamic neurodegeneration following ischaemic cortical stroke in osteopontin-deficient mice Brain 2006 129 1426 1437 10.1093/brain/awl094 16636021
Soulet D. Rivest S. Bone-marrow-derived microglia: Myth or reality? Curr. Opin. Pharmacol. 2008 8 508 518 10.1016/j.coph.2008.04.002
Cartier N. Lewis C.-A. Zhang R. Rossi F. The role of microglia in human disease: Therapeutic tool or target? Acta Neuropathol. 2014 128 363 380 10.1007/s00401-014-1330-y
El Khoury J. Luster A.D. Mechanisms of microglia accumulation in Alzheimer’s disease: Therapeutic implications Trends Pharmacol. Sci. 2008 29 626 632 10.1016/j.tips.2008.08.004
Huang S. Li Z. Liu Y. Gao D. Zhang X. Hao J. Yang F. Neural regulation of bone remodeling: Identifying novel neural molecules and pathways between brain and bone J. Cell. Physiol. 2019 234 5466 5477 10.1002/jcp.26502
Rajpar I. Tomlinson R.E. Function of peripheral nerves in the development and healing of tendon and bone Proc. Semin. Cell Dev. Biol. 2022 123 48 56 10.1016/j.semcdb.2021.05.001
Freese J.L. Pino D. Pleasure S.J. Wnt signaling in development and disease Neurobiol. Dis. 2010 38 148 153 10.1016/j.nbd.2009.09.003
Kele-Olovsson J.M. Regulation Of Midbrain Dopaminergic Neuron Development by Wnts, Sfrps And bHLH Proteins Karolinska Institutet (Sweden) Solna, Sweden 2007
Kane L.A. Lazarou M. Fogel A.I. Li Y. Yamano K. Sarraf S.A. Banerjee S. Youle R.J. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity J. Cell Biol. 2014 205 143 153 10.1083/jcb.201402104
Zhang W. Hou W. Chen M. Chen E. Xue D. Ye C. Li W. Pan Z. Upregulation of parkin accelerates osteoblastic differentiation of bone marrow-derived mesenchymal stem cells and bone regeneration by enhancing autophagy and β-Catenin signaling Front. Cell Dev. Biol. 2020 907 576104 10.3389/fcell.2020.576104
Takeda S. Elefteriou F. Levasseur R. Liu X. Zhao L. Parker K.L. Armstrong D. Ducy P. Karsenty G. Leptin regulates bone formation via the sympathetic nervous system Cell 2002 111 305 317 10.1016/S0092-8674(02)01049-8
Elefteriou F. Ahn J.D. Takeda S. Starbuck M. Yang X. Liu X. Kondo H. Richards W.G. Bannon T.W. Noda M. Leptin regulation of bone resorption by the sympathetic nervous system and CART Nature 2005 434 514 520 10.1038/nature03398
Sato S. Hanada R. Kimura A. Abe T. Matsumoto T. Iwasaki M. Inose H. Ida T. Mieda M. Takeuchi Y. Central control of bone remodeling by neuromedin U Nat. Med. 2007 13 1234 1240 10.1038/nm1640
Hohmann E.L. Elde R.P. Rysavy J.A. Einzig S. Gebhard R.L. Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers Science 1986 232 868 871 10.1126/science.3518059
Wan Q.Q. Qin W.P. Ma Y.X. Shen M.J. Li J. Zhang Z.B. Chen J.H. Tay F.R. Niu L.N. Jiao K. Crosstalk between bone and nerves within bone Adv. Sci. 2021 8 2003390 10.1002/advs.202003390
Zhu Y. Ma Y. Elefteriou F. Cortical bone is an extraneuronal site of norepinephrine uptake in adult mice Bone Rep. 2018 9 188 198 10.1016/j.bonr.2018.11.002
Robles H. Park S. Joens M.S. Fitzpatrick J.A. Craft C.S. Scheller E.L. Characterization of the bone marrow adipocyte niche with three-dimensional electron microscopy Bone 2019 118 89 98 10.1016/j.bone.2018.01.020
Mulcrone P.L. Campbell J.P. Clément-Demange L. Anbinder A.L. Merkel A.R. Brekken R.A. Sterling J.A. Elefteriou F. Skeletal colonization by breast cancer cells is stimulated by an osteoblast and β2AR-dependent neo-angiogenic switch J. Bone Miner. Res. 2017 32 1442 1454 10.1002/jbmr.3133
Hirai T. Tanaka K. Togari A. β-adrenergic receptor signaling regulates Ptgs2 by driving circadian gene expression in osteoblasts J. Cell Sci. 2014 127 3711 3719 10.1242/jcs.148148 24994935
Yao Q. Liang H. Huang B. Xiang L. Wang T. Xiong Y. Yang B. Guo Y. Gong P. Beta-adrenergic signaling affect osteoclastogenesis via osteocytic MLO-Y4 cells’ RANKL production Biochem. Biophys. Res. Commun. 2017 488 634 640 10.1016/j.bbrc.2016.11.011 27823934
Ma Y. Nyman J.S. Tao H. Moss H.H. Yang X. Elefteriou F. β2-Adrenergic receptor signaling in osteoblasts contributes to the catabolic effect of glucocorticoids on bone Endocrinology 2011 152 1412 1422 10.1210/en.2010-0881 21266510
Wu H. Song Y. Li J. Lei X. Zhang S. Gao Y. Cheng P. Liu B. Miao S. Bi L. Blockade of adrenergic β-receptor activation through local delivery of propranolol from a 3D collagen/polyvinyl alcohol/hydroxyapatite scaffold promotes bone repair in vivo Cell Prolif. 2020 53 e12725 10.1111/cpr.12725 31746058
Bellier J.-P. Kimura H. Peripheral type of choline acetyltransferase: Biological and evolutionary implications for novel mechanisms in cholinergic system J. Chem. Neuroanat. 2011 42 225 235 10.1016/j.jchemneu.2011.02.005
Bajayo A. Bar A. Denes A. Bachar M. Kram V. Attar-Namdar M. Zallone A. Kovács K.J. Yirmiya R. Bab I. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual Proc. Natl. Acad. Sci. USA 2012 109 15455 15460 10.1073/pnas.1206061109
Sato T. Abe T. Chida D. Nakamoto N. Hori N. Kokabu S. Sakata Y. Tomaru Y. Iwata T. Usui M. Functional role of acetylcholine and the expression of cholinergic receptors and components in osteoblasts FEBS Lett. 2010 584 817 824 10.1016/j.febslet.2010.01.001
Brazill J.M. Beeve A.T. Craft C.S. Ivanusic J.J. Scheller E.L. Nerves in bone: Evolving concepts in pain and anabolism J. Bone Miner. Res. 2019 34 1393 1406 10.1002/jbmr.3822
Oostinga D. Steverink J.G. van Wijck A.J. Verlaan J.-J. An understanding of bone pain: A narrative review Bone 2020 134 115272 10.1016/j.bone.2020.115272
Zhou Y. Zhang H. Zhang G. He Y. Zhang P. Sun Z. Gao Y. Tan Y. Calcitonin gene-related peptide reduces Porphyromonas gingivalis LPS-induced TNF-α release and apoptosis in osteoblasts Mol. Med. Rep. 2018 17 3246 3254
Heffner M.A. Genetos D.C. Christiansen B.A. Bone adaptation to mechanical loading in a mouse model of reduced peripheral sensory nerve function PLoS ONE 2017 12 e0187354 10.1371/journal.pone.0187354
Kosmidis S. Polyzos A. Harvey L. Youssef M. Denny C.A. Dranovsky A. Kandel E.R. RbAp48 protein is a critical component of GPR158/OCN signaling and ameliorates age-related memory loss Cell Rep. 2018 25 959 973.e956 10.1016/j.celrep.2018.09.077
Bhusal A. Rahman M.H. Lee W.-H. Bae Y.C. Lee I.-K. Suk K. Paradoxical role of lipocalin-2 in metabolic disorders and neurological complications Biochem. Pharmacol. 2019 169 113626 10.1016/j.bcp.2019.113626
Laszczyk A. Nettles D. Pollock T. Fox S. Garcia M. Wang J. Quarles L. King G. FGF-23 deficiency impairs hippocampal-dependent cognitive function eNeuro 2019 6 e0469 10.1523/ENEURO.0469-18.2019
Hanada R. Leibbrandt A. Hanada T. Kitaoka S. Furuyashiki T. Fujihara H. Trichereau J. Paolino M. Qadri F. Plehm R. Central control of fever and female body temperature by RANKL/RANK Nature 2009 462 505 509 10.1038/nature08596
Zhang J. Fujita Y. Chang L. Pu Y. Qu Y. Wang S. Hashimoto K. Beneficial effects of anti-RANKL antibody in depression-like phenotype, inflammatory bone markers, and bone mineral density in male susceptible mice after chronic social defeat stress Behav. Brain Res. 2020 379 112397 10.1016/j.bbr.2019.112397
Zhang D.-D. Cao Y. Mu J.-Y. Liu Y.-M. Gao F. Han F. Zhai F.-F. Zhou L.-X. Ni J. Yao M. Inflammatory biomarkers and cerebral small vessel disease: A community-based cohort study (P3-3.001) AAN Enterprises 2022 98 1915 10.1136/svn-2021-001102
Levey A.I. Qiu D. Zhao L. Hu W.T. Duong D.M. Higginbotham L. Dammer E.B. Seyfried N.T. Wingo T.S. Hales C.M. A phase II study repurposing atomoxetine for neuroprotection in mild cognitive impairment Brain 2022 145 1924 1938 10.1093/brain/awab452
Ross R.D. Shah R.C. Leurgans S. Bottiglieri T. Wilson R.S. Sumner D.R. Circulating Dkk1 and TRAIL are associated with cognitive decline in community-dwelling, older adults with cognitive concerns J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2018 73 1688 10.1093/gerona/glx252
Sheehan-Rooney K. Swartz M.E. Lovely C.B. Dixon M.J. Eberhart J.K. Bmp and Shh signaling mediate the expression of satb2 in the pharyngeal arches PLoS ONE 2013 8 e59533 10.1371/journal.pone.0059533
Konopka G. Bomar J.M. Winden K. Coppola G. Jonsson Z.O. Gao F. Peng S. Preuss T.M. Wohlschlegel J.A. Geschwind D.H. Human-specific transcriptional regulation of CNS development genes by FOXP2 Nature 2009 462 213 217 10.1038/nature08549 19907493
Ye J.-H. Xu Y.-J. Gao J. Yan S.-G. Zhao J. Tu Q. Zhang J. Duan X.-J. Sommer C.A. Mostoslavsky G. Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs Biomaterials 2011 32 5065 5076 21492931
Miguez A. Ducret S. Di Meglio T. Parras C. Hmidan H. Haton C. Sekizar S. Mannioui A. Vidal M. Kerever A. Opposing roles for Hoxa2 and Hoxb2 in hindbrain oligodendrocyte patterning J. Neurosci. 2012 32 17172 17185 10.1523/JNEUROSCI.0885-12.2012 23197710
Geisen M.J. Meglio T.D. Pasqualetti M. Ducret S. Brunet J.-F. Chedotal A. Rijli F.M. Hox paralog group 2 genes control the migration of mouse pontine neurons through slit-robo signaling PLoS Biol. 2008 6 e142 10.1371/journal.pbio.0060142 18547144
Dobreva G. Chahrour M. Dautzenberg M. Chirivella L. Kanzler B. Fariñas I. Karsenty G. Grosschedl R. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation Cell 2006 125 971 986 10.1016/j.cell.2006.05.012
Tavella S. Bobola N. Expressing Hoxa2 across the entire endochondral skeleton alters the shape of the skeletal template in a spatially restricted fashion Differentiation 2010 79 194 202 10.1016/j.diff.2009.11.004
Garcez R.C. Le Douarin N.M. Creuzet S.E. Combinatorial activity of Six1-2-4 genes in cephalic neural crest cells controls craniofacial and brain development Cell. Mol. Life Sci. 2014 71 2149 2164 10.1007/s00018-013-1477-z
Zhao H. Zhou W. Yao Z. Wan Y. Cao J. Zhang L. Zhao J. Li H. Zhou R. Li B. Foxp1/2/4 regulate endochondral ossification as a suppresser complex Dev. Biol. 2015 398 242 254
MuhChyi C. Juliandi B. Matsuda T. Nakashima K. Epigenetic regulation of neural stem cell fate during corticogenesis Int. J. Dev. Neurosci. 2013 31 424 433 10.1016/j.ijdevneu.2013.02.006
Borrell V. Cárdenas A. Ciceri G. Galcerán J. Flames N. Pla R. Nóbrega-Pereira S. García-Frigola C. Peregrín S. Zhao Z. Slit/Robo signaling modulates the proliferation of central nervous system progenitors Neuron 2012 76 338 352 10.1016/j.neuron.2012.08.003
Long Q. Qiu B. Wang K. Yang J. Jia C. Xin W. Wang P. Han R. Fei Z. Liu W. Genetically engineered bone marrow mesenchymal stem cells improve functional outcome in a rat model of epilepsy Brain Res. 2013 1532 1 13 10.1016/j.brainres.2013.07.020
Sugita S. Hosaka Y. Okada K. Mori D. Yano F. Kobayashi H. Taniguchi Y. Mori Y. Okuma T. Chang S.H. Transcription factor Hes1 modulates osteoarthritis development in cooperation with calcium/calmodulin-dependent protein kinase 2 Proc. Natl. Acad. Sci. USA 2015 112 3080 3085 10.1073/pnas.1419699112
Otto E. Knapstein P.-R. Jahn D. Appelt J. Frosch K.-H. Tsitsilonis S. Keller J. Crosstalk of brain and bone—Clinical observations and their molecular bases Int. J. Mol. Sci. 2020 21 4946 10.3390/ijms21144946
Owen R. Reilly G.C. In vitro models of bone remodelling and associated disorders Front. Bioeng. Biotechnol. 2018 6 134 10.3389/fbioe.2018.00134
Blesa J.S. Przedborski S. Parkinson’s disease: Animal models and dopaminergic cell vulnerability Front. Neuroanat 2014 8 155 10.3389/fnana.2014.00155
Oliveros Anerillas L. Kingham P.J. Lammi M.J. Wiberg M. Kelk P. Three-dimensional osteogenic differentiation of bone marrow mesenchymal stem cells promotes matrix metallopeptidase 13 (MMP13) expression in Type I collagen hydrogels Int. J. Mol. Sci. 2021 22 13594 10.3390/ijms222413594
Fatehullah A. Tan S.H. Barker N. Organoids as an in vitro model of human development and disease Nat. Cell Biol. 2016 18 246 254 10.1038/ncb3312
Choi S.H. Kim Y.H. Hebisch M. Sliwinski C. Lee S. D’Avanzo C. Chen H. Hooli B. Asselin C. Muffat J. A three-dimensional human neural cell culture model of Alzheimer’s disease Nature 2014 515 274 278 10.1038/nature13800
Tibbitt M.W. Anseth K.S. Hydrogels as extracellular matrix mimics for 3D cell culture Biotechnol. Bioeng. 2009 103 655 663 10.1002/bit.22361
Amelian A. Wasilewska K. Megias D. Winnicka K. Application of standard cell cultures and 3D in vitro tissue models as an effective tool in drug design and development Pharmacol. Rep. 2017 69 861 870 10.1016/j.pharep.2017.03.014
Bolognin S. Fossépré M. Qing X. Jarazo J. Ščančar J. Moreno E.L. Nickels S.L. Wasner K. Ouzren N. Walter J. 3D cultures of Parkinson’s disease-specific dopaminergic neurons for high content phenotyping and drug testing Adv. Sci. 2019 6 1800927 10.1002/advs.201800927 30643711
Oun A. Sabogal-Guaqueta A.M. Galuh S. Alexander A. Kortholt A. Dolga A. The multifaceted role of LRRK2 in Parkinson’s disease: From human iPSC to organoids Neurobiol. Dis. 2022 173 105837 10.1016/j.nbd.2022.105837 35963526
Fett M.E. Pilsl A. Paquet D. Van Bebber F. Haass C. Tatzelt J. Schmid B. Winklhofer K.F. Parkin is protective against proteotoxic stress in a transgenic zebrafish model PLoS ONE 2010 5 e11783 10.1371/journal.pone.0011783 20689587
Baptista L.S. Kronemberger G.S. Côrtes I. Charelli L.E. Matsui R.A.M. Palhares T.N. Sohier J. Rossi A.M. Granjeiro J.M. Adult stem cells spheroids to optimize cell colonization in scaffolds for cartilage and bone tissue engineering Int. J. Mol. Sci. 2018 19 1285 10.3390/ijms19051285 29693604
Collins M.N. Ren G. Young K. Pina S. Reis R.L. Oliveira J.M. Scaffold fabrication technologies and structure/function properties in bone tissue engineering Adv. Funct. Mater. 2021 31 2010609 10.1002/adfm.202010609
Kargozar S. Mozafari M. Hamzehlou S. Brouki Milan P. Kim H.-W. Baino F. Bone tissue engineering using human cells: A comprehensive review on recent trends, current prospects, and recommendations Appl. Sci. 2019 9 174
Heo J.H. Kang D. Seo S.J. Jin Y. Engineering the extracellular matrix for organoid culture Int. J. Stem Cells 2022 15 60 69 10.15283/ijsc21190
Chen S. Chen X. Geng Z. Su J. The horizon of bone organoid: A perspective on construction and application Bioact. Mater. 2022 18 15 25 10.1016/j.bioactmat.2022.01.048
Ye W. Luo C. Li C. Huang J. Liu F. Organoids to study immune functions, immunological diseases and immunotherapy Cancer Lett. 2020 477 31 40
Grebenyuk S. Ranga A. Engineering organoid vascularization Front. Bioeng. Biotechnol. 2019 7 39 10.3389/fbioe.2019.00039
Singh A. Nikkhah M. Annabi N. Biomaterials, Cells, and Patho-physiology: Building Better Organoids and On-Chip Technologies Biomaterials 2019 198 1 2 10.1016/j.biomaterials.2019.02.011
Torisawa Y.-s. Spina C.S. Mammoto T. Mammoto A. Weaver J.C. Tat T. Collins J.J. Ingber D.E. Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro Nat. Methods 2014 11 663 669 10.1038/nmeth.2938
Tonelli F. Bek J.W. Besio R. De Clercq A. Leoni L. Salmon P. Coucke P.J. Willaert A. Forlino A. Zebrafish: A resourceful vertebrate model to investigate skeletal disorders Front. Endocrinol. 2020 11 489 10.3389/fendo.2020.00489
Finley M.L. Kidd K.A. Curry R.A. Lescord G.L. Clayden M.G. O’Driscoll N.J. A comparison of mercury biomagnification through lacustrine food webs supporting brook trout (Salvelinus fontinalis) and other salmonid fishes Front. Environ. Sci. 2016 4 23 10.3389/fenvs.2016.00023
Bergen D.J. Kague E. Hammond C.L. Zebrafish as an emerging model for osteoporosis: A primary testing platform for screening new osteo-active compounds Front. Endocrinol. 2019 10 6 10.3389/fendo.2019.00006
Flinn L. Mortiboys H. Volkmann K. Köster R.W. Ingham P.W. Bandmann O. Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio) Brain 2009 132 1613 1623 10.1093/brain/awp108
Razali K. Othman N. Mohd Nasir M.H. Doolaanea A.A. Kumar J. Ibrahim W.N. Mohamed Ibrahim N. Mohamed W.M. The Promise of the zebrafish model for Parkinson’s disease: Today’s science and tomorrow’s treatment Front. Genet. 2021 12 655550 10.3389/fgene.2021.655550
Kõks S. Dogan S. Tuna B.G. González-Navarro H. Potter P. Vandenbroucke R.E. Mouse models of ageing and their relevance to disease Mech. Ageing Dev. 2016 160 41 53 10.1016/j.mad.2016.10.001
Jilka R.L. The relevance of mouse models for investigating age-related bone loss in humans J. Gerontol. Ser. A: Biomed. Sci. Med. Sci. 2013 68 1209 1217 10.1093/gerona/glt046
Klæstrup I.H. Just M.K. Holm K.L. Alstrup A.K.O. Romero-Ramos M. Borghammer P. Van Den Berge N. Impact of aging on animal models of Parkinson’s disease Front. Aging Neurosci. 2022 14 909273 10.3389/fnagi.2022.909273
Moore D.J. Dawson T.M. Value of genetic models in understanding the cause and mechanisms of Parkinson’s disease Curr. Neurol. Neurosci. Rep. 2008 8 288 296 18590612
Van der Vlag M. Havekes R. Heckman P.R. The contribution of Parkin, PINK1 and DJ-1 genes to selective neuronal degeneration in Parkinson’s disease Eur. J. Neurosci. 2020 52 3256 3268 10.1111/ejn.14689 31991026
Chang E.E.S. Ho P.W.-L. Liu H.-F. Pang S.Y.-Y. Leung C.-T. Malki Y. Choi Z.Y.-K. Ramsden D.B. Ho S.-L. LRRK2 mutant knock-in mouse models: Therapeutic relevance in Parkinson’s disease Transl. Neurodegener. 2022 11 10 35152914
Yang T.-X. Zhu Y.-F. Wang C.-C. Yang J.-Y. Xue C.-H. Huang Q.-R. Wang Y.-M. Zhang T.-T. Epa-enriched plasmalogen attenuates the cytotoxic effects of lps-stimulated microglia on the sh-sy5y neuronal cell line Brain Res. Bull. 2022 186 143 152 10.1016/j.brainresbull.2022.06.002 35728742
Brennan M.Á. Renaud A. Gamblin A.-l. D’arros C. Nedellec S. Trichet V. Layrolle P. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds Biomed. Mater. 2015 10 045019 26238732
Noroozi R. Shamekhi M.A. Mahmoudi R. Zolfagharian A. Asgari F. Mousavizadeh A. Bodaghi M. Hadi A. Haghighipour N. In vitro static and dynamic cell culture study of novel bone scaffolds based on 3D-printed PLA and cell-laden alginate hydrogel Biomed. Mater. 2022 17 045024 10.1088/1748-605X/ac7308
Ohori-Morita Y. Niibe K. Limraksasin P. Nattasit P. Miao X. Yamada M. Mabuchi Y. Matsuzaki Y. Egusa H. Novel Mesenchymal Stem Cell Spheroids with Enhanced Stem Cell Characteristics and Bone Regeneration Ability Stem Cells Transl. Med. 2022 11 434 449
Yuan P. Zhang M. Tong L. Morse T.M. McDougal R.A. Ding H. Chan D. Cai Y. Grutzendler J. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease Nature 2022 612 328 337
Rabadan M. De La Cruz E.D. Rao S.B. Chen Y. Gong C. Crabtree G. Xu B. Markx S. Gogos J.A. Yuste R. An in vitro model of neuronal ensembles Nat. Commun. 2022 13 3340 10.1038/s41467-022-31073-1
Spitz S. Bolognin S. Brandauer K. Fuessl J. Schuller P. Schobesberger S. Jordan C. Schaedl B. Grillari J. Wanzenboeck H.D. Development of a multi-sensor integrated midbrain organoid-on-a-chip platform for studying Parkinson’s disease bioRxiv 2022 10.1101/2022.08.19.504522
Shin N. Kim Y. Ko J. Choi S.W. Hyung S. Lee S.E. Park S. Song J. Jeon N.L. Kang K.S. Vascularization of iNSC spheroid in a 3D spheroid-on-a-chip platform enhances neural maturation Biotechnol. Bioeng. 2022 119 566 574 10.1002/bit.27978
Brighi C. Cordella F. Chiriatti L. Soloperto A. Di Angelantonio S. Retinal and brain organoids: Bridging the gap between in vivo physiology and in vitro micro-physiology for the study of alzheimer’s diseases Front. Neurosci. 2020 14 655 10.3389/fnins.2020.00655
Gonzalez C. Armijo E. Bravo-Alegria J. Becerra-Calixto A. Mays C.E. Soto C. Modeling amyloid beta and tau pathology in human cerebral organoids Mol. Psychiatry 2018 23 2363 2374 10.1038/s41380-018-0229-8
Zhang Y. Yu T. Ding J. Li Z. Bone-on-a-chip platforms and integrated biosensors: Towards advanced in vitro bone models with real-time biosensing Biosens. Bioelectron. 2022 219 114798 10.1016/j.bios.2022.114798
Cha C. Microfluidic Biotechnology for “Bone-on-a-Chip” Biofabr. Orthop. Methods Tech. Appl. 2022 1 181 209
Gan S. Huang Z. Liu N. Su R. Xie G. Zhong B. Zhang K. Wang S. Hu X. Zhang J. Micro RNA-140-5p impairs zebrafish embryonic bone development via targeting BMP-2 FEBS Lett. 2016 590 1438 1446 10.1002/1873-3468.12190
Méndez-Martínez L. Guerrero-Peña L. Suárez-Bregua P. Naranjo S. Tena J.J. Rotllant J. Neural Regulation of Bone Mineral Homeostasis in Fish: Functional and Transcriptional Characterization of pth4 Neurons Proceedings of the 6th International Symposium on Genomics in Aquaculture Granada, Spain 4–6 May 2022
Kawanishi S. Takata K. Itezono S. Nagayama H. Konoya S. Chisaki Y. Toda Y. Nakata S. Yano Y. Kitamura Y. Bone-marrow-derived microglia-like cells ameliorate brain amyloid pathology and cognitive impairment in a mouse model of Alzheimer’s disease J. Alzheimer’s Dis. 2018 64 563 585 10.3233/JAD-170994
LLabre J.E. Gil C. Amatya N. Lagalwar S. Possidente B. Vashishth D. Degradation of Bone Quality in a Transgenic Mouse Model of Alzheimer′ s Disease J. Bone Miner. Res. 2022 37 2548 2565 10.1002/jbmr.4723
Cardoso A.L. Fernandes A. Aguilar-Pimentel J.A. de Angelis M.H. Guedes J.R. Brito M.A. Ortolano S. Pani G. Athanasopoulou S. Gonos E.S. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases Ageing Res. Rev. 2018 47 214 277 10.1016/j.arr.2018.07.004
Tsai Y.-L. Yen C.-T. Wang Y.-F. Astrocyte Dysregulation and Calcium Ion Imbalance May Link the Development of Osteoporosis and Alzheimer’s Disease J. Alzheimer’s Dis. 2022 88 439 445 10.3233/JAD-220218
Li S. Yang B. Teguh D. Zhou L. Xu J. Rong L. Amyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling Int. J. Mol. Sci. 2016 17 1683 10.3390/ijms17101683 27735865
Wu B.-W. Guo J.-D. Wu M.-S. Liu Y. Lu M. Zhou Y.-H. Han H.-W. Osteoblast-derived lipocalin-2 regulated by miRNA-96-5p/Foxo1 advances the progression of Alzheimer’s disease Epigenomics 2020 12 1501 1513 10.2217/epi-2019-0215 32901506
Ximerakis M. Lipnick S.L. Innes B.T. Simmons S.K. Adiconis X. Dionne D. Mayweather B.A. Nguyen L. Niziolek Z. Ozek C. Single-cell transcriptomic profiling of the aging mouse brain Nat. Neurosci. 2019 22 1696 1708 10.1038/s41593-019-0491-3 31551601
Zhong L. Wang Z. Wang D. Wang Z. Martens Y.A. Wu L. Xu Y. Wang K. Li J. Huang R. Amyloid-beta modulates microglial responses by binding to the triggering receptor expressed on myeloid cells 2 (TREM2) Mol. Neurodegener. 2018 13 15 10.1186/s13024-018-0247-7 29587871
Li R. Lv Z.-Y. Li Y.-X. Hao Y.-L. Effects of TYROBP Deficiency on Neuroinflammation of a Alzheimer’s Disease Mouse Model Carrying a PSEN1 p. G378E Mutation Chin. Med. Sci. J. Chung-Kuo I Hsueh K’o Hsueh Tsa Chih 2022 10.24920/004059
Ulland T.K. Colonna M. TREM2—A key player in microglial biology and Alzheimer disease Nat. Rev. Neurol. 2018 14 667 675 10.1038/s41582-018-0072-1
Tsukasaki M. Takayanagi H. Osteoimmunology: Evolving concepts in bone–immune interactions in health and disease Nat. Rev. Immunol. 2019 19 626 642 10.1038/s41577-019-0178-8
Varma V. Varma S. An Y. Hohman T. Seddighi S. Casanova R. Beri A. Dammer E. Seyfried N. Pletnikova O. Alpha-2 macroglobulin in Alzheimer’s disease: A marker of neuronal injury through the RCAN1 pathway Mol. Psychiatry 2017 22 13 23 10.1038/mp.2016.206
Xiong L. Pan J.-X. Guo H.-h. Mei L. Xiong W.-C. Parkinson’s in the bone Cell Biosci. 2021 11 190 10.1186/s13578-021-00702-5
Allen N.E. Canning C.G. Almeida L.R.S. Bloem B.R. Keus S.H. Löfgren N. Nieuwboer A. Verheyden G.S. Yamato T.P. Sherrington C. Interventions for preventing falls in Parkinson’s disease Cochrane Database Syst. Rev. 2022 6 CD011574
Berwick D.C. Harvey K. The regulation and deregulation of Wnt signaling by PARK genes in health and disease J. Mol. Cell Biol. 2014 6 3 12 10.1093/jmcb/mjt037
Inestrosa N.C. Arenas E. Emerging roles of Wnts in the adult nervous system Nat. Rev. Neurosci. 2010 11 77 86 10.1038/nrn2755
L’Episcopo F. Tirolo C. Testa N. Caniglia S. Morale M.C. Serapide M.F. Pluchino S. Marchetti B. Wnt/β-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinson’s disease Stem Cells 2014 32 2147 2163 10.1002/stem.1708
Manikandan M. Abuelreich S. Elsafadi M. Alsalman H. Almalak H. Siyal A. Hashmi J.A. Aldahmash A. Kassem M. Alfayez M. NR2F1 mediated down-regulation of osteoblast differentiation was rescued by bone morphogenetic protein-2 (BMP-2) in human MSC Differentiation 2018 104 36 41 10.1016/j.diff.2018.10.003
Walter J. Bolognin S. Poovathingal S.K. Magni S. Gérard D. Antony P.M. Nickels S.L. Salamanca L. Berger E. Smits L.M. The Parkinson’s-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1 Cell Rep. 2021 37 109864 10.1016/j.celrep.2021.109864
Bisson E.J. Finlayson M.L. Ekuma O. Leslie W.D. Marrie R.A. Multiple sclerosis is associated with low bone mineral density and osteoporosis Neurol. Clin. Pract. 2019 9 391 399 10.1212/CPJ.0000000000000669
Biel A. Castanza A.S. Rutherford R. Fair S.R. Chifamba L. Wester J.C. Hester M.E. Hevner R.F. AUTS2 syndrome: Molecular mechanisms and model systems Front. Mol. Neurosci. 2022 15 858582 10.3389/fnmol.2022.858582
Eisenberg E. Levanon E.Y. Human housekeeping genes, revisited TRENDS Genet. 2013 29 569 574 10.1016/j.tig.2013.05.010
Beunders G. Voorhoeve E. Golzio C. Pardo L.M. Rosenfeld J.A. Talkowski M.E. Simonic I. Lionel A.C. Vergult S. Pyatt R.E. Exonic deletions in AUTS2 cause a syndromic form of intellectual disability and suggest a critical role for the C terminus Am. J. Hum. Genet. 2013 92 210 220 10.1016/j.ajhg.2012.12.011
De Rubeis S. He X. Goldberg A.P. Poultney C.S. Samocha K. Ercument Cicek A. Kou Y. Liu L. Fromer M. Walker S. Synaptic, transcriptional and chromatin genes disrupted in autism Nature 2014 515 209 215 10.1038/nature13772
Cheng P.-l. Lu H. Shelly M. Gao H. Poo M.-m. Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development Neuron 2011 69 231 243 10.1016/j.neuron.2010.12.021 21262463
Benitez-Burraco A. Boeckx C. Possible functional links among brain-and skull-related genes selected in modern humans Front. Psychol. 2015 6 794 10.3389/fpsyg.2015.00794 26136701
Liedén A. Kvarnung M. Nilssson D. Sahlin E. Lundberg E.S. Intragenic duplication—A novel causative mechanism for SATB2-associated syndrome Am. J. Med. Genet. Part A 2014 164 3083 3087 10.1002/ajmg.a.36769 25251319
Zhao X. Qu Z. Tickner J. Xu J. Dai K. Zhang X. The role of SATB2 in skeletogenesis and human disease Cytokine Growth Factor Rev. 2014 25 35 44 10.1016/j.cytogfr.2013.12.010 24411565
Hassan M.Q. Gordon J.A. Beloti M.M. Croce C.M. Wijnen A.J.v. Stein J.L. Stein G.S. Lian J.B. A network connecting Runx2, SATB2, and the miR-23a∼ 27a∼ 24-2 cluster regulates the osteoblast differentiation program Proc. Natl. Acad. Sci. USA 2010 107 19879 19884 10.1073/pnas.1007698107
Gong Y. Qian Y. Yang F. Wang H. Yu Y. Lentiviral-mediated expression of SATB 2 promotes osteogenic differentiation of bone marrow stromal cells in vitro and in vivo Eur. J. Oral Sci. 2014 122 190 197 10.1111/eos.12122
Huang H. Tindall D.J. Dynamic FoxO transcription factors J. Cell Sci. 2007 120 2479 2487 10.1242/jcs.001222
Van Bon B. Hoischen A. Hehir-Kwa J. De Brouwer A. Ruivenkamp C. Gijsbers A. Marcelis C. De Leeuw N. Veltman J. Brunner H. Intragenic deletion in DYRK1A leads to mental retardation and primary microcephaly Clin. Genet. 2011 79 296 299 10.1111/j.1399-0004.2010.01544.x
Courcet J.-B. Faivre L. Malzac P. Masurel-Paulet A. Lopez E. Callier P. Lambert L. Lemesle M. Thevenon J. Gigot N. The DYRK1A gene is a cause of syndromic intellectual disability with severe microcephaly and epilepsy J. Med. Genet. 2012 49 731 736 10.1136/jmedgenet-2012-101251
Lee Y. Ha J. Kim H.J. Kim Y.-S. Chang E.-J. Song W.-J. Kim H.-H. Negative feedback Inhibition of NFATc1 by DYRK1A regulates bone homeostasis J. Biol. Chem. 2009 284 33343 33351 10.1074/jbc.M109.042234
Shakibaei M. Shayan P. Busch F. Aldinger C. Buhrmann C. Lueders C. Mobasheri A. Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: Potential role of Runx2 deacetylation PLoS ONE 2012 7 e35712 10.1371/journal.pone.0035712
Iyer S. Han L. Bartell S.M. Kim H.-N. Gubrij I. de Cabo R. O’Brien C.A. Manolagas S.C. Almeida M. Sirtuin1 (Sirt1) promotes cortical bone formation by preventing β-catenin sequestration by FoxO transcription factors in osteoblast progenitors J. Biol. Chem. 2014 289 24069 24078 10.1074/jbc.M114.561803
Joe I.-S. Jeong S.-G. Cho G.-W. Resveratrol-induced SIRT1 activation promotes neuronal differentiation of human bone marrow mesenchymal stem cells Neurosci. Lett. 2015 584 97 102 10.1016/j.neulet.2014.10.024
Peng X.-d. Xu P.-Z. Chen M.-L. Hahn-Windgassen A. Skeen J. Jacobs J. Sundararajan D. Chen W.S. Crawford S.E. Coleman K.G. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2 Genes Dev. 2003 17 1352 1365 10.1101/gad.1089403
Mukherjee A. Larson E.A. Klein R.F. Rotwein P. Distinct actions of akt1 on skeletal architecture and function PLoS ONE 2014 9 e93040 10.1371/journal.pone.0093040
Dudek H. Datta S.R. Franke T.F. Birnbaum M.J. Yao R. Cooper G.M. Segal R.A. Kaplan D.R. Greenberg M.E. Regulation of neuronal survival by the serine-threonine protein kinase Akt Science 1997 275 661 665 10.1126/science.275.5300.661
Bajwa N.M. Kesavan C. Mohan S. Long-term consequences of traumatic brain injury in bone metabolism Front. Neurol. 2018 9 115 10.3389/fneur.2018.00115
Jodoin M. Rouleau D.M. Therrien E. Chauny J.-M. Sandman E. Larson-Dupuis C. Leduc S. Gosselin N. De Beaumont L. Investigating the incidence and magnitude of heterotopic ossification with and without joints involvement in patients with a limb fracture and mild traumatic brain injury Bone Rep. 2019 11 100222 10.1016/j.bonr.2019.100222
Kalamakis G. Brüne D. Ravichandran S. Bolz J. Fan W. Ziebell F. Stiehl T. Catalá-Martinez F. Kupke J. Zhao S. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain Cell 2019 176 1407 1419.e1414 10.1016/j.cell.2019.01.040
Brunet A. Goodell M.A. Rando T.A. Ageing and rejuvenation of tissue stem cells and their niches Nat. Rev. Mol. Cell Biol. 2022 24 45 62 10.1038/s41580-022-00510-w
Baror R. Neumann B. Segel M. Chalut K.J. Fancy S.P. Schafer D.P. Franklin R.J. Transforming growth factor-beta renders ageing microglia inhibitory to oligodendrocyte generation by CNS progenitors Glia 2019 67 1374 1384 10.1002/glia.23612 30861188
Desplats P. Lee H.-J. Bae E.-J. Patrick C. Rockenstein E. Crews L. Spencer B. Masliah E. Lee S.-J. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein Proc. Natl. Acad. Sci. USA 2009 106 13010 13015 10.1073/pnas.0903691106 19651612
Eglitis M.A. Mezey É. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice Proc. Natl. Acad. Sci. USA 1997 94 4080 4085 10.1073/pnas.94.8.4080 9108108
Brazelton T.R. Rossi F.M. Keshet G.I. Blau H.M. From marrow to brain: Expression of neuronal phenotypes in adult mice Science 2000 290 1775 1779 10.1126/science.290.5497.1775 11099418
Mezey E. Chandross K.J. Harta G. Maki R.A. McKercher S.R. Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow Science 2000 290 1779 1782 10.1126/science.290.5497.1779
Liu X.-Y. Yang L.-P. Zhao L. Stem cell therapy for Alzheimer’s disease World J. Stem Cells 2020 12 787 10.4252/wjsc.v12.i8.787
Lee H.J. Lee J.K. Lee H. Carter J.E. Chang J.W. Oh W. Yang Y.S. Suh J.-G. Lee B.-H. Jin H.K. Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer’s disease mouse model through modulation of neuroinflammation Neurobiol. Aging 2012 33 588 602 10.1016/j.neurobiolaging.2010.03.024
Harach T. Jammes F. Muller C. Duthilleul N. Cheatham V. Zufferey V. Cheatham D. Lukasheva Y.A. Lasser T. Bolmont T. Administrations of human adult ischemia-tolerant mesenchymal stem cells and factors reduce amyloid beta pathology in a mouse model of Alzheimer’s disease Neurobiol. Aging 2017 51 83 96 10.1016/j.neurobiolaging.2016.11.009
Zhang L. Dong Z.-f. Zhang J.-y. Immunomodulatory role of mesenchymal stem cells in Alzheimer’s disease Life Sci. 2020 246 117405 10.1016/j.lfs.2020.117405
Munoz J.R. Stoutenger B.R. Robinson A.P. Spees J.L. Prockop D.J. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice Proc. Natl. Acad. Sci. USA 2005 102 18171 18176 Erratum in Proc. Natl. Acad. Sci. USA 2006, 103, 2000–2002 10.1073/pnas.0508945102
Kan I. Barhum Y. Melamed E. Offen D. Mesenchymal stem cells stimulate endogenous neurogenesis in the subventricular zone of adult mice Stem Cell Rev. Rep. 2011 7 404 412 10.1007/s12015-010-9190-x
Segal-Gavish H. Karvat G. Barak N. Barzilay R. Ganz J. Edry L. Aharony I. Offen D. Kimchi T. Mesenchymal stem cell transplantation promotes neurogenesis and ameliorates autism related behaviors in BTBR mice Autism Res. 2016 9 17 32 10.1002/aur.1530
Cova L. Armentero M. Zennaro E. Calzarossa C. Bossolasco P. Busca G. Lambertenghi Deliliers G. Polli E. Nappi G. Silani V. et al. Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson’s disease Brain Res. 2010 1311 12 27 10.1016/j.brainres.2009.11.041
Bao X. Wei J. Feng M. Lu S. Li G. Dou W. Ma W. Ma S. An Y. Qin C. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats Brain Res. 2011 1367 103 113 10.1016/j.brainres.2010.10.063
Volkman R. Offen D. Concise review: Mesenchymal stem cells in neurodegenerative diseases Stem Cells 2017 35 1867 1880 10.1002/stem.2651
Park H.-J. Shin J.Y. Lee B.R. Kim H.O. Lee P.H. Mesenchymal stem cells augment neurogenesis in the subventricular zone and enhance differentiation of neural precursor cells into dopaminergic neurons in the substantia nigra of a parkinsonian model Cell Transplant. 2012 21 1629 1640 10.3727/096368912X640556
Sanchez-Ramos J. Song S. Cardozo-Pelaez F. Hazzi C. Stedeford T. Willing A. Freeman T. Saporta S. Janssen W. Patel N. Adult bone marrow stromal cells differentiate into neural cells in vitro Exp. Neurol. 2000 164 247 256 10.1006/exnr.2000.7389
Nakano M. Nagaishi K. Konari N. Saito Y. Chikenji T. Mizue Y. Fujimiya M. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes Sci. Rep. 2016 6 24805 10.1038/srep24805
Börger V. Bremer M. Ferrer-Tur R. Gockeln L. Stambouli O. Becic A. Giebel B. Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents Int. J. Mol. Sci. 2017 18 1450 10.3390/ijms18071450
Xiong Y. Mahmood A. Chopp M. Emerging potential of exosomes for treatment of traumatic brain injury Neural Regen. Res. 2017 12 19 10.4103/1673-5374.198966
Yang Y. Ye Y. Su X. He J. Bai W. He X. MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury Front. Cell. Neurosci. 2017 11 55 10.3389/fncel.2017.00055 28293177
Yu Z. Ling Z. Lu L. Zhao J. Chen X. Xu P. Zou X. Regulatory Roles of Bone in Neurodegenerative Diseases Front. Aging Neurosci. 2020 12 610581 10.3389/fnagi.2020.610581 33408628
Xin H. Li Y. Buller B. Katakowski M. Zhang Y. Wang X. Shang X. Zhang Z.G. Chopp M. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth Stem Cells 2012 30 1556 1564 10.1002/stem.1129 22605481
Zhang J. Zhang Z.G. Lu M. Wang X. Shang X. Elias S.B. Chopp M. MiR-146a promotes remyelination in a cuprizone model of demyelinating injury Neuroscience 2017 348 252 263 10.1016/j.neuroscience.2017.02.029 28237816
Kubota K. Nakano M. Kobayashi E. Mizue Y. Chikenji T. Otani M. Nagaishi K. Fujimiya M. An enriched environment prevents diabetes-induced cognitive impairment in rats by enhancing exosomal miR-146a secretion from endogenous bone marrow-derived mesenchymal stem cells PLoS ONE 2018 13 e0204252 10.1371/journal.pone.0204252
Yuyama K. Sun H. Mitsutake S. Igarashi Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia J. Biol. Chem. 2012 287 10977 10989 10.1074/jbc.M111.324616
Vatsa P. Negi R. Ansari U. Khanna V. Pant A. Insights of Extracellular Vesicles of Mesenchymal Stem Cells: A Prospective Cell-Free Regenerative Medicine for Neurodegenerative Disorders Mol. Neurobiol. 2022 59 459 474 10.1007/s12035-021-02603-7
Barzilay R. Kan I. Ben-Zur T. Bulvik S. Melamed E. Offen D. Induction of human mesenchymal stem cells into dopamine-producing cells with different differentiation protocols Stem Cells Dev. 2008 17 547 554 10.1089/scd.2007.0172
Liang J. Wu S. Zhao H. Li S.-l. Liu Z.-x. Wu J. Zhou L. Human umbilical cord mesenchymal stem cells derived from Wharton’s jelly differentiate into cholinergic-like neurons in vitro Neurosci. Lett. 2013 532 59 63 10.1016/j.neulet.2012.11.014
Liu X. Li D. Jiang D. Fang Y. Acetylcholine secretion by motor neuron-like cells from umbilical cord mesenchymal stem cells Neural Regen. Res. 2013 8 2086
Brofiga M. Massobrio P. Brain-on-a-Chip: Dream or Reality? Front. Neurosci. 2022 16 837623 10.3389/fnins.2022.837623
Kaur A. Nigam K. Tyagi A. Dang S. A Preliminary Pharmacodynamic Study for the Management of Alzheimer’s Disease Using Memantine-Loaded PLGA Nanoparticles AAPS PharmSciTech 2022 23 298 10.1208/s12249-022-02449-9