Article (Périodiques scientifiques)
SEMKIS-DSL: A Domain-Specific Language to Support Requirements Engineering of Datasets and Neural Network Recognition
JAHIC, Benjamin; GUELFI, Nicolas; RIES, Benoit
2023In Information, 14 (4)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
information-14-00213-v2.pdf
Postprint Éditeur (3.78 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
neural network; domain-specific language; method; requirements; model-driven engineering
Résumé :
[en] Neural network (NN) components are being increasingly incorporated into software systems. Neural network properties are determined by their architecture, as well as the training and testing datasets used. The engineering of datasets and neural networks is a challenging task that requires methods and tools to satisfy customers’ expectations. The lack of tools that support requirements specification languages makes it difficult for engineers to describe dataset and neural network recognition skill requirements. Existing approaches often rely on traditional ad hoc approaches, without precise requirement specifications for data selection criteria, to build these datasets. Moreover, these approaches do not focus on the requirements of the neural network’s expected recognition skills. We aim to overcome this issue by defining a domain-specific language that precisely specifies dataset requirements and expected recognition skills after training for an NN-based system. In this paper, we present a textual domain-specific language (DSL) called SEMKIS-DSL (Software Engineering Methodology for the Knowledge management of Intelligent Systems) that is designed to support software engineers in specifying the requirements and recognition skills of neural networks. This DSL is proposed in the context of our general SEMKIS development process for neural network engineering. We illustrate the DSL’s concepts using a running example that focuses on the recognition of handwritten digits. We show some requirements and recognition skills specifications and demonstrate how our DSL improves neural network recognition skills.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
JAHIC, Benjamin ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
GUELFI, Nicolas ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
RIES, Benoit ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
SEMKIS-DSL: A Domain-Specific Language to Support Requirements Engineering of Datasets and Neural Network Recognition
Date de publication/diffusion :
01 avril 2023
Titre du périodique :
Information
eISSN :
2078-2489
Maison d'édition :
Multidisciplinary Digital Publishing Institute (MDPI), Suisse
Titre particulier du numéro :
Feature Papers in Information in 2023
Volume/Tome :
14
Fascicule/Saison :
4
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 04 mai 2023

Statistiques


Nombre de vues
183 (dont 10 Unilu)
Nombre de téléchargements
91 (dont 2 Unilu)

citations Scopus®
 
7
citations Scopus®
sans auto-citations
6
citations OpenAlex
 
8

Bibliographie


Publications similaires



Contacter ORBilu