[en] The emergence and spread of antimicrobial resistance (AMR) and resistant bacteria, are a global public health challenge. Through horizontal gene transfer, potential pathogens can acquire antimicrobial resistance genes (ARGs) that can subsequently be spread between human, animal, and environmental reservoirs. To understand the dissemination of ARGs and linked microbial taxa, it is necessary to map the resistome within different microbial reservoirs. By integrating knowledge on ARGs in the different reservoirs, the One Health approach is crucial to our understanding of the complex mechanisms and epidemiology of AMR. Here, we highlight the latest insights into the emergence and spread of AMR from the One Health perspective, providing a baseline of understanding for future scientific investigations into this constantly growing global health threat.
Disciplines :
Microbiology Life sciences: Multidisciplinary, general & others
Author, co-author :
Despotovic, Milena ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
de Nies, Laura; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Busi, Susheel Bhanu ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Wilmes, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
External co-authors :
no
Language :
English
Title :
Reservoirs of antimicrobial resistance in the context of One Health
Brogan, D.M., Mossialos, E., A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility. Glob Health, 12, 2016, 8.
Nadeem, S.F., Gohar, U.F., Tahir, S.F., Mukhtar, H., Pornpukdeewattana, S., Nukthamna, P., Moula Ali, A.M., Bavisetty, S.C.B., Massa, S., Antimicrobial resistance: more than 70 years of war between humans and bacteria. Crit Rev Microbiol 46 (2020), 578–599.
Reygaert, W.C., An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4 (2018), 482–501.
Martinez, J.L., General principles of antibiotic resistance in bacteria. Drug Discov Today Technol 11 (2014), 33–39.
MacLean, R.C., San, Millan, A., The evolution of antibiotic resistance. Science 365 (2019), 1082–1083.
Bassetti, M., Righi, E., Carnelutti, A., Graziano, E., Russo, A., Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control. Expert Rev Anti-Infect Ther 16 (2018), 749–761.
Salinas, L., Cárdenas, P., Johnson, T.J., Vasco, K., Graham, J., Trueba, G., Diverse commensal escherichia coli clones and plasmids disseminate antimicrobial resistance genes in domestic animals and children in a semirural community in Ecuador. mSphere 4 (2019), e00316–e00319.
Maree, M., Thi Nguyen, L.T., Ohniwa, R.L., Higashide, M., Msadek, T., Morikawa, K., Natural transformation allows transfer of SCCmec-mediated methicillin resistance in Staphylococcus aureus biofilms. Nat Commun, 13, 2022, 2477 The study demonstrates experimental evidence of (Staphylococcal cassette chromosome mec) SCCmec (i.e. a large MGE involved in resistance to β-lactam antibiotics) transfer from MRSA, and from methicillin-resistant coagulase-negative Staphylococci, to methicillin-sensitive Staphylococcus aureus, suggesting that natural transformation have an important role in the transfer of MGEs in Staphylococcus aureus biofilms.
Ngoi, S.T., Chong, C.W., Ponnampalavanar, S.S.L.S., Tang, S.N., Idris, N., Abdul Jabar, K., Gregory, M.J., Husain, T., Teh, C.S.J., Genetic mechanisms and correlated risk factors of antimicrobial-resistant ESKAPEE pathogens isolated in a tertiary hospital in Malaysia. Antimicrob Resist Infect Control, 10, 2021, 70.
De Boeck, I., van den Broek, M.F.L., Allonsius, C.N., Spacova, I., Wittouck, S., Martens, K., Wuyts, S., Cauwenberghs, E., Jokicevic, K., Vandenheuvel, D., et al. Lactobacilli have a niche in the human nose. Cell Rep, 31, 2020, 107674.
Lewis, H.C., Mølbak, K., Reese, C., Aarestrup, F.M., Selchau, M., Sørum, M., Skov, R.L., Pigs as source of methicillin-resistant Staphylococcus aureus CC398 infections in humans, Denmark. Emerg Infect Dis 14 (2008), 1383–1389.
Dahl, L.G., Joensen, K.G., Østerlund, M.T., Kiil, K., Nielsen, E.M., Prediction of antimicrobial resistance in clinical Campylobacter jejuni isolates from whole-genome sequencing data. Eur J Clin Microbiol Infect Dis 40 (2021), 673–682.
Mangat, C.S., Bekal, S., Avery, B.P., Côté, G., Daignault, D., Doualla-Bell, F., Finley, R., Lefebvre, B., Bharat, A., Parmley, E.J., et al. Genomic investigation of the emergence of invasive multidrug-resistant Salmonella enterica Serovar Dublin in humans and animals in Canada. Antimicrob Agents Chemother 63 (2019), e00108–e00119.
Zhang, X.-S., Li, J., Krautkramer, K.A., Badri, M., Battaglia, T., Borbet, T.C., Koh, H., Ng, S., Sibley, R.A., Li, Y., et al. Antibiotic-induced acceleration of type 1 diabetes alters maturation of innate intestinal immunity. eLife, 7, 2018, e37816.
Dionisi, A.M., Lucarelli, C., Benedetti, I., Owczarek, S., Luzzi, I., Molecular characterisation of multidrug-resistant Salmonella enterica serotype Infantis from humans, animals and the environment in Italy. Int J Antimicrob Agents 38 (2011), 384–389.
Trinh, P., Zaneveld, J.R., Safranek, S., Rabinowitz, P.M., One health relationships between human, animal, and environmental microbiomes: a mini-review. Front Public Health, 6, 2018, 235, 10.3389/fpubh.2018.00235.
Stanton, I.C., Bethel, A., Leonard, A.F.C., Gaze, W.H., Garside, R., What is the research evidence for antibiotic resistance exposure and transmission to humans from the environment? A systematic map protocol. Environ Evid, 9(1), 2020, 12, 10.1186/s13750-020-00197-6.
Hennart, M., Panunzi, L.G., Rodrigues, C., Gaday, Q., Baines, S.L., Barros-Pinkelnig, M., Carmi-Leroy, A., Dazas, M., Wehenkel, A.M., Didelot, X., et al. Population genomics and antimicrobial resistance in Corynebacterium diphtheriae. Genome Med, 12, 2020, 107.
Montassier, E., Valdés-Mas, R., Batard, E., Zmora, N., Dori-Bachash, M., Suez, J., Elinav, E., Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat Microbiol 6 (2021), 1043–1054.
Brinkac, L., Voorhies, A., Gomez, A., Nelson, K.E., The threat of antimicrobial resistance on the human microbiome. Micro Ecol 74 (2017), 1001–1008.
Forslund, K., Sunagawa, S., Coelho, L.P., Bork, P., Metagenomic insights into the human gut resistome and the forces that shape it: prospects & overviews. BioEssays 36 (2014), 316–329.
Schmidt, T.S., Hayward, M.R., Coelho, L.P., Li, S.S., Costea, P.I., Voigt, A.Y., Wirbel, J., Maistrenko, O.M., Alves, R.J., Bergsten, E., et al. Extensive transmission of microbes along the gastrointestinal tract. eLife, 8, 2019, e42693.
Carr, V.R., Witherden, E.A., Lee, S., Shoaie, S., Mullany, P., Proctor, G.B., Gomez-Cabrero, D., Moyes, D.L., Abundance and diversity of resistomes differ between healthy human oral cavities and gut. Nat Commun, 11, 2020, 693 The authors revealed country- and body site-specific differences in the prevalence of ARGs and their classes, as well as the differences in the resistance mechanisms. By demonstrating lower diversity of ARGs of the oral cavity samples in comparison to the paired gut samples, they highlight an ultimate need for extensive surveillance studies to understand the mechanisms and composition of the resistome across different human microbial habitats.
Jo, J.-H., Harkins, C.P., Schwardt, N.H., Portillo, J.A., NISC Comparative Sequencing Program, Zimmerman, M.D., Carter, C.L., Hossen, M.A., Peer, C.J., Polley, E.C., et al. Alterations of human skin microbiome and expansion of antimicrobial resistance after systemic antibiotics. Sci Transl Med, 13, 2021, eabd8077 Alterations in skin microbiome after administration of systemic antibiotics to healthy human volunteers were investigated in this prospective, randomized study, showing long-lasting changes of the skin microbial communities after antibiotic treatment. The study highlights the role of skin microbiome as a potential source of AMR.
Wheatley, R.M., Caballero, J.D., van der Schalk, T.E., De Winter, F.H.R., Shaw, L.P., Kapel, N., Recanatini, C., Timbermont, L., Kluytmans, J., Esser, M., et al. Gut to lung translocation and antibiotic mediated selection shape the dynamics of Pseudomonas aeruginosa in an ICU patient. Nat Commun, 13, 2022, 6523 By combining clinical and genomic data the authors identified gut to lung transmission of Pseudomonas aeruginosa resistant lineage in a critically ill individual at the intensive care unit, suggesting that prevention of gut colonization or gut to lung transmission may represent an important strategy in preventing Pseudomonas infection in critically ill individuals. This study paves the way for future studies to confirm gut to lung transmission as a potentially crucial mechanism of Pseudomonas aeruginosa respiratory tract colonization in critically ill individuals.
Graham, D., Giesen, M., Bunce, J., Strategic approach for prioritising local and regional sanitation interventions for reducing global antibiotic resistance. Water, 11(1), 2019, 27, 10.3390/w11010027.
Lee, G., Yoo, K., A review of the emergence of antibiotic resistance in bioaerosols and its monitoring methods. Rev Environ Sci Biotechnol 21 (2022), 799–827.
Yu, Y., Liang, Z., Liao, W., Ye, Z., Li, G., An, T., Contributions of meat waste decomposition to the abundance and diversity of pathogens and antibiotic-resistance genes in the atmosphere. Sci Total Environ, 784, 2021, 147128.
European Centre for Disease Prevention and Control, World Health Organization, Antimicrobial resistance surveillance in Europe: 2022: 2020 data. 2022, Publications Office.
Skarżyńska, M., Leekitcharoenphon, P., Hendriksen, R.S., Aarestrup, F.M., Wasyl, D., A metagenomic glimpse into the gut of wild and domestic animals: quantification of antimicrobial resistance and more. PLoS One, 15, 2020, e0242987.
Holman, D.B., Yang, W., Alexander, T.W., Antibiotic treatment in feedlot cattle: a longitudinal study of the effect of oxytetracycline and tulathromycin on the fecal and nasopharyngeal microbiota. Microbiome, 7(1), 2019, 86, 10.1186/s40168-019-0696-4.
Aarestrup, F.M., Seyfarth, A.M., Emborg, H.-D., Pedersen, K., Hendriksen, R.S., Bager, F., Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in Fecal Enterococci from food animals in Denmark. Antimicrob Agents Chemother 45 (2001), 2054–2059.
Alvarez, J., Lopez, G., Muellner, P., Frutos, C., Ahlstrom, C., Serrano, T., Moreno, M.A., Duran, M., Saez, J.L., Dominguez, L., et al. Identifying emerging trends in antimicrobial resistance using Salmonella surveillance data in poultry in Spain. Transbound Emerg Dis 67 (2020), 250–262.
Gay, E., Bour, M., Cazeau, G., Jarrige, N., Martineau, C., Madec, J.-Y., Haenni, M., Antimicrobial usages and antimicrobial resistance in commensal Escherichia coli from Veal Calves in France: evolution during the fattening process. Front Microbiol, 10, 2019, 792, 10.3389/fmicb.2019.00792.
Diaconu, E.L., Carfora, V., Alba, P., Di Matteo, P., Stravino, F., Buccella, C., Dell'Aira, E., Onorati, R., Sorbara, L., Battisti, A., et al. Novel IncFII plasmid harbouring bla NDM-4 in a carbapenem-resistant Escherichia coli of pig origin, Italy. J Antimicrob Chemother 75 (2020), 3475–3479.
Irrgang, A., Tausch, S.H., Pauly, N., Grobbel, M., Kaesbohrer, A., Hammerl, J.A., First detection of GES-5-producing Escherichia coli from livestock—an increasing diversity of Carbapenemases recognized from german pig production. Microorganisms, 8, 2020, 1593.
Morrison, B.J., Rubin, J.E., Carbapenemase producing bacteria in the food supply escaping detection. PLoS One, 10, 2015, e0126717.
Barza, M., Potential mechanisms of increased disease in humans from antimicrobial resistance in food animals. Clin Infect Dis 34 (2002), S123–S125.
Rinsky, J.L., Nadimpalli, M., Wing, S., Hall, D., Baron, D., Price, L.B., Larsen, J., Stegger, M., Stewart, J., Heaney, C.D., Livestock-associated methicillin and multidrug resistant Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina. PLoS One, 8, 2013, e67641.
Anders, J., Bisha, B., High-throughput detection and characterization of antimicrobial resistant Enterococcus sp. isolates from GI tracts of European starlings visiting concentrated animal feeding operations. Foods, 9, 2020, 890.
Saiful Islam, Md, Paul, A., Talukder, M., Roy, K., Abdus Sobur, Md, Ievy, S., Mehedi Hasan Nayeem, Md, Rahman, S., Nazmul Hussain Nazir, K.H.M., Tofazzal Hossain, M., et al. Migratory birds travelling to Bangladesh are potential carriers of multi-drug resistant Enterococcus spp., Salmonella spp., and Vibrio spp. Saudi J Biol Sci 28 (2021), 5963–5970.
Islam, Md.S., Sobur, Md.A., Rahman, S., Ballah, F.M., Ievy, S., Siddique, M.P., Rahman, M., Kafi, Md.A., Rahman, Md.T., Detection of blaTEM, blaCTX-M, blaCMY, and blaSHV genes among extended-spectrum beta-lactamase-producing Escherichia coli isolated from migratory birds travelling to Bangladesh. Microb Ecol 83 (2022), 942–950.
Thomas, J.C., Oladeinde, A., Kieran, T.J., Finger, J.W., Bayona-Vásquez, N.J., Cartee, J.C., Beasley, J.C., Seaman, J.C., McArthur, J.V., Rhodes, O.E., et al. Co-occurrence of antibiotic, biocide, and heavy metal resistance genes in bacteria from metal and radionuclide contaminated soils at the Savannah River Site. Micro Biotechnol 13 (2020), 1179–1200.
Barancheshme, F., Munir, M., Strategies to combat antibiotic resistance in the wastewater treatment plants. Front Microbiol, 8, 2018, 2603.
Nies, L. de, Busi, S.B., Kunath, B.J., May, P., Wilmes, P., Mobilome-driven segregation of the resistome in biological wastewater treatment. eLife, 11, 2022, e81196, 10.7554/eLife.81196 The study analyzed metagenomic, metatranscriptomic and metaproteomic data systematically collected over 1.5 years from biological wastewater treatment plants. By combining analysis of gene abundance, expression, and association with MGEs and bacterial taxa, the study identified a core group of 15 categories of AMR providing evidence for further monitoring of ARGs in the environmental settings.
Hwengwere, K., Paramel Nair, H., Hughes, K.A., Peck, L.S., Clark, M.S., Walker, C.A., Antimicrobial resistance in Antarctica: is it still a pristine environment?. Microbiome, 10(1), 2022, 71, 10.1186/s40168-022-01250-x.
Lepage, P., Leclerc, M.C., Joossens, M., Mondot, S., Blottière, H.M., Raes, J., Ehrlich, D., Doré, J., A metagenomic insight into our gut's microbiome. Gut 62 (2013), 146–158.
Duarte, A.S.R., Röder, T., Van Gompel, L., Petersen, T.N., Hansen, R.B., Hansen, I.M., Bossers, A., Aarestrup, F.M., Wagenaar, J.A., Hald, T., Metagenomics-based approach to source-attribution of antimicrobial resistance determinants – identification of reservoir resistome signatures. Front Microbiol, 11, 2021, 601407.
Qian, X., Gunturu, S., Guo, J., Chai, B., Cole, J.R., Gu, J., Tiedje, J.M., Metagenomic analysis reveals the shared and distinct features of the soil resistome across tundra, temperate prairie, and tropical ecosystems. Microbiome, 9, 2021, 108.
Bai, Y., Ruan, X., Xie, X., Yan, Z., Antibiotic resistome profile based on metagenomics in raw surface drinking water source and the influence of environmental factor: a case study in Huaihe River Basin, China. Environ Pollut 248 (2019), 438–447.
Pal, C., Bengtsson-Palme, J., Kristiansson, E., Larsson, D.G.J., The structure and diversity of human, animal and environmental resistomes. Microbiome, 4, 2016, 54.
Li, B., Yang, Y., Ma, L., Ju, F., Guo, F., Tiedje, J.M., Zhang, T., Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J 9 (2015), 2490–2502.
Boolchandani, M., D'Souza, A.W., Dantas, G., Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 20 (2019), 356–370, 10.1038/s41576-019-0108-4.
Kim, D.-W., Cha, C.-J., Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission. Exp Mol Med 53 (2021), 301–309.
Kultima, J.R., Coelho, L.P., Forslund, K., Huerta-Cepas, J., Li, S.S., Driessen, M., Voigt, A.Y., Zeller, G., Sunagawa, S., Bork, P., MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics 32 (2016), 2520–2523.
Beghini, F., McIver, L.J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., Mailyan, A., Manghi, P., Scholz, M., Thomas, A.M., et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife, 10, 2021, e65088.
de Nies, L., Lopes, S., Busi, S.B., Galata, V., Heintz-Buschart, A., Laczny, C.C., May, P., Wilmes, P., PathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome, 9, 2021, 49 The authors developed an easy-to-use modular pipeline for the metagenomic analyses of toxins, virulence factors and AMR. It combines the prediction of these pathogenic factors with the identification of MGEs providing further depth to the analysis by considering the localization of the genes on MGEs and the chromosome.