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Reservoirs of antimicrobial resistance in the context of 
One Health
Milena Despotovic1, Laura de Nies1, Susheel Bhanu Busi1 and  
Paul Wilmes1,2

The emergence and spread of antimicrobial resistance (AMR) and 
resistant bacteria, are a global public health challenge. Through 
horizontal gene transfer, potential pathogens can acquire 
antimicrobial resistance genes (ARGs) that can subsequently be 
spread between human, animal, and environmental reservoirs. To 
understand the dissemination of ARGs and linked microbial taxa, 
it is necessary to map the resistome within different microbial 
reservoirs. By integrating knowledge on ARGs in the different 
reservoirs, the One Health approach is crucial to our 
understanding of the complex mechanisms and epidemiology of 
AMR. Here, we highlight the latest insights into the emergence 
and spread of AMR from the One Health perspective, providing a 
baseline of understanding for future scientific investigations into 
this constantly growing global health threat.
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Introduction
Globalization and enhanced mobility, a growing human 
population, close contact with animals and their en-
vironment, intensive farming, pollution, ecosystem de-
gradation, and climate changes have led to the 
emergence of new pathogens and the spread of anti-
microbial resistance (AMR). Throughout history, 

bacterial infections have been a major cause of human 
and animal diseases. The discovery and use of anti-
biotics enabled their effective management from a 
clinical point of view, but at the same time resulted in 
increased AMR. If no measures are undertaken to mi-
tigate the current rates of emergence and spread of 
AMR, it is estimated that AMR will result in a financial 
burden of 100 trillion dollars at the global level and 
cause over 10 million deaths per year by 2050 [1].

Human health is tightly linked to the health of animals 
and the ecosystems they share, enabling resistant bac-
teria or antimicrobial resistance genes (ARGs) to spread 
between different human, animal, and environmental 
reservoirs. These phenomena have the potential to ra-
pidly trigger a pandemic, whereby AMR is no longer 
constrained by either geographic or human–animal bor-
ders [2]. In view of the resulting limitations to conven-
tional approaches for the prevention and control of 
infectious diseases, the One Health approach has 
emerged. One Health represents a transdisciplinary ap-
proach that shifts the focus from disease treatment and 
control to disease prevention and surveillance. By in-
tegrating research on resistant microorganisms circu-
lating in humans, animals, and the environment, One 
Health is crucial to enhancing our understanding of the 
complex epidemiology of AMR [2].

In this review, we highlight the latest insights into the 
emergence and spread of AMR from the One Health 
perspective, thereby providing a baseline reference of 
understanding for future scientific investigations into 
this leading and constantly growing global health threat.

Mechanisms of antimicrobial resistance
Bacteria have evolved various counteractive mechanisms 
to confer resistance to antimicrobial agents and assure 
their survival in a competitive environment [3]. Bacterial 
resistance can be classified as either natural or acquired. 
Natural resistance is either constitutively expressed in a 
bacterial species (i.e. intrinsic), or expressed upon ex-
posure to antibiotics (i.e. induced) [4]. Acquired re-
sistance refers to the acquisition of resistance-conferring 
genetic material through horizontal gene transfer 
(HGT). Employing HGT via mobile genetic elements 
(MGEs), bacteria can acquire ARGs through plasmid- 
mediated conjugation, transduction via bacteriophages, 
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or integron-mediated transfer of genetic information 
between bacteria [3,4]. Alternatively, resistance can be 
acquired via mutations in the chromosomal DNA fol-
lowing antibiotic exposure [5]. Besides encoding for re-
sistance to most, if not all, major classes of antibiotics, 
multiple genes conferring resistance to different anti-
biotic categories can be encoded on the same plasmid. 
This is especially evident in multidrug-resistant Kleb-
siella pneumoniae [6]. Furthermore, plasmids encoding 
ARGs are not only found within pathogenic bacteria, but 
can also be detected in commensals [7]. Additionally, the 
environment within bacterial biofilms, one of the 
common modes of microbial life, may promote HGT. In 
particular, it has been recently shown that pathogenic 
methicillin-resistant Staphylococcus aureus (MRSA) can 
transfer MGEs, which are too large to be packed into 
phages, to methicillin-sensitive Staphylococcus aureus 
strains by natural transformation in biofilms [8]. 

Microbial reservoirs of antimicrobial 
resistance 
Resistant bacteria residing within human, animal, and en-
vironmental reservoirs may spread from one to another, at 

both local and global levels (Fig. 1). The role of the re-
sistome (i.e. the collection of ARGs in a given environment 
or organism) and the differences between ecosystems are 
of great importance not only to understand the AMR dis-
semination, but also to identify pools of potentially novel 
resistance mechanisms. 

Many studies have focused specifically on the Enterococcus 
faecium, Staphylococcus aureus, Klebsiella pneumoniae, 
Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter 
spp., and Escherichia coli pathogens that are highly resistant 
to last-resort drugs and extensively described in different 
microbial reservoirs [9]. Additionally, MRSA has been re-
ported to be both human- and animal-associated with a 
high risk for zoonotic transmission [10,11]. Recent research 
has been extended to other pathogens posing a threat to 
human health, such as resistant Campylobacter jejuni for 
which infections have been reported in humans, animals, 
and the environment [12]. Similarly, multidrug-resistant 
Salmonella has been identified in human [13], animal  
[14], and environmental reservoirs [15]. 

In the context of One Health, natural microbial com-
munities, or microbiomes, may also have an important 

Figure 1  
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AMR dissemination in One Health. MGE-mediated (i.e. phage, plasmids, and integrons) dissemination of AMR across different microbial reservoirs. 
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role in the dissemination of AMR. The structure of 
human and animal microbiomes is shaped by several 
factors, including exposure to microorganisms through 
contacts with exogenous sources (e.g. animals, environ-
ment), specific host–microbe interactions, and the out-
come of competitive, cooperative, and/or predatory 
(phage) interactions [16]. Recent evidence suggests that 
ARGs in environmental bacteria can be rapidly acquired 
by human-associated and pathogenic bacteria [17], 
thereby posing a considerable threat to human health. 

Human 
The prevalence of AMR and the studies thereof have 
mostly been limited to clinically relevant pathogenic 
bacteria. These include but are not limited to extended- 
spectrum beta-lactamase (ESBL)-producing and carba-
penem-resistant Klebsiella pneumoniae, ESBL-, AmpC-, 
and carbapenemase-producing Escherichia coli, carba-
penem-resistant Acinetobacter baumannii and Pseudomonas 
aeruginosa, vancomycin-resistant Enterococcus faecium, 
MRSA, penicillin-resistant Streptococcus pneumoniae, as 
well as fluoroquinolone-resistant Salmonella and Shigella 
species. More recently, lesser-known human pathogens 
such as Corynebacterium diphtheriae isolates have been 
reported to carry penicillin, macrolide, and multidrug 
resistance [18]. However, AMR is also associated with 
the human microbiome. Although most of the micro-
organisms constituting the human microbiome are 
commensals, they have an important role in AMR dis-
semination. The transfer of AMR can occur from pa-
thogenic bacteria to commensals [19], and from 
commensals or environmental bacteria to the members 
of the microbial community [20]. Once ARGs are ac-
quired, commensal organisms may mediate the dis-
semination of AMR to the microorganisms with 
pathogenic potential. Interestingly, resistance potential 
in the gut microbiome exhibits significant differences 
between geographical areas resulting from differences in 
antibiotic usage as well as those linked to medicine and 
food production [21]. In this context, the oral cavity is an 
important gateway as it constantly reloads the gut mi-
crobiome by oral-to-gut transmission [22], and represents 
an additional microbial reservoir contributing to the re-
sistome [23]. Similarly, due to the constant shedding of 
microbiota in the environment, the human skin is also an 
important AMR reservoir [19]. The treatment with sys-
temic antibiotics is associated with long-lasting changes 
of the human skin microbiome composition potentially 
contributing to the AMR [24]. Additionally, bacterial 
transmission within the host may contribute to AMR at 
smaller spatial scales or in case of a low mutation rate  
[25]. For example, Wheatley et al. revealed a Pseudo-
monas aeruginosa-resistant lineage within the gut of a 
critically ill individual demonstrating local resistance 
adaptation due to the organ-specific selective pressure. 

Subsequently, the same strain was found in the lung 
suggesting within-host transmission as one of the AMR 
dissemination mechanisms [25]. 

Transmission of AMR has been extensively discussed in 
the context of sanitary conditions, such as open defeca-
tion or access to clean water [26]. However, recent evi-
dence suggests that transmission of ARGs via air (i.e. 
bioaerosols) may lead to an increased prevalence of 
HGT [27,28]. The spread of bioaerosols especially came 
into focus with the COVID-19 pandemic that has also 
influenced global AMR spreading. For example, in the 
WHO European region, reporting on resistant Escherichia 
coli and Streptococcus pneumoniae was decreased during 
2020, likely due to the sanitary measures implemented 
to prevent the spread of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). However, Acineto-
bacter spp. and Enterococcus faecium, resistant bacteria 
usually present in the hospital environments, were more 
frequently observed during the same period [29]. 

Animals 
Antibiotics are extensively used in livestock and poultry, 
especially in food production, leading to microbial 
community compositional shifts and potential increase 
in ARGs. Treatments using antibiotics in the animal 
industry also raise the risk of emergence of resistant 
bacteria due to longer-term selective pressures. In this 
context, an increased AMR abundance was detected in 
the gut of farm animals (chicken, turkey, and pig) 
compared with wild animals (boars, foxes, and rodents)  
[30]. Similarly, bovine fecal and nasopharyngeal micro-
biome changes accompanied with increased abundance 
of ARGs were detected after prophylactic application of 
antibiotics [31]. A further five-year longitudinal study in 
pigs and broilers treated with antibiotics for growth 
promotion highlighted the concomitant increase in AMR 
specifically in Enterococcus spp. [32]. 

Though the emergence of resistant pathogens is a cri-
tical consideration, the spread of ARGs from animal to 
the human microbiome is of more immediate concern. 
Such spread can occur via multiple routes, including the 
direct transmission through food products. Multiple 
studies have reported food animals as a source of AMR, 
including multidrug-resistant Salmonella from poultry  
[33], cephalosporin-resistant Escherichia coli from veal 
calves [34], and carbapenem-resistant Escherichia coli 
from pigs [35,36]. Additionally, a number of carba-
penem-resistant bacteria, including Pseudomonas, Steno-
trophomonas, and Myroides species, were identified in a 
variety of seafood products [37], underlining the argu-
ment that nonpathogenic bacteria, regularly excluded 
from surveillance programs, may serve as a reservoir for 
AMR along food supply chains [37,38]. Furthermore, 
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resistant bacteria may spread from animals to humans 
through direct contact such as in the agricultural sector  
[16]. For example, livestock-associated MRSA was 
identified in workers at an industrial livestock operation, 
but not in workers at an antibiotic-free livestock opera-
tion [39]. These reports underline the need for a more 
comprehensive analysis and monitoring of livestock re-
servoirs of AMR. 

Extensively used concentrated animal feeding opera-
tions have also been recognized as AMR reservoirs and a 
source of resistant bacteria (e.g. Enterococcus spp., 
Salmonella spp., and Vibrio spp.) in migratory birds  
[40,41]. They were recently discovered as a source of 
ESBL-producing Escherichia coli in Bangladesh [42]. 
Given the propensity for these birds to be in contact 
with humans in populated countries such as Bangladesh, 
it is likely that ARGs may in turn affect human health or 
likely disseminate within the human population. 

Environment 
The role of human-influenced environments in sus-
taining and disseminating AMR is largely unexplored. 
Polluted environments (e.g. with heavy metals) con-
tribute to the evolution and spread of AMR through 
coselection. Heavy metal contamination, for example, 
coelects antibiotic and metal resistance by cross-re-
sistance, where single genetic mutation may mediate 
resistance to both metals and antibiotics, or co-re-
sistance, where both metal- and antibiotic-resistance 
genes are localized on the same MGE [43]. The level of 
AMR in a specific environment is highly impacted by 
interactions between different environments. Built en-
vironments, for example, hospitals and extended care 
facilities, where bacteria are exposed to high and re-
peated doses of antibiotics, represent hotspots for AMR. 
Furthermore, sewage from both the hospital and the 
general population is ultimately transported to waste-
water treatment plants that therefore provide a vast re-
servoir for AMR [44]. Importantly, the transmission of 
ARGs via MGEs was further highlighted recently by de 
Nies et al. who reported the segregation of ARG cate-
gories between plasmids and phages in wastewater 
treatment plants [45]. Recent evidence suggests that 
anthropogenic forcing of environments has led to in-
creased AMR in the environment, such as Antarctica, 
that was previously recognized as pristine [46]. There-
fore, the role and potential of the environment as a re-
servoir cannot be discounted in AMR stewardship in 
relation to the One Health triad. 

Approaches in assessing antimicrobial 
resistance: a One Health perspective 
Traditionally, culture-based methods are used in clinical 
settings to investigate AMR and resistant bacteria [37] 
that are readily culturable using standard cultivation 

methods. However, sequencing-based methodologies 
allow for the genomic analysis of all organisms within a 
microbial ecosystem [47] providing a comprehensive 
view on all ARGs within different microbial reservoirs. 
Metagenomic studies that are focused on multiple mi-
crobial reservoirs still largely target only one side of the 
One Health triad, for example, human–animal, ani-
mal–environment, or environment–human [48–50]. 
Nonetheless, some studies have pursued a complete 
One Health AMR approach [51,52], showing a wide-
spread occurrence of vancomycin-resistance genes in all 
environments, except from river sediments and drinking 
water [52]. Additionally, a number of ARGs corre-
sponding to aminoglycoside, macrolide, beta-lactam, and 
tetracycline resistance were found to be widespread and 
present in almost all of the investigated environ-
ments [51]. 

To investigate the presence of AMR and MGEs within 
metagenomes, different bioinformatic workflows, read-, 
and de novo assembly-based methods [53] have been 
developed. In the context of One Health, it is crucial to 
study the prevalence and spread of AMR simulta-
neously. However, methods to systematically assess 
AMR within and between biomes have long remained 
elusive [54]. Tools such as MOCAT2 (metagenomics 
analysis toolkit) [55] and HUMAnN3 (HMP Unified 
Metabolic Analysis Network) [56] enable AMR gene 
identification, but do not provide any information with 
respect to MGE contextualization. To precisely address 
the gap in available methodologies, PathoFact [57], 
which genomically contextualizes ARGs, including their 
localization on MGEs, was developed. By combining 
effective study designs with computational analysis 
methods, PathoFact enables tracing the origins and 
dissemination of AMR from one reservoir to another 
using metagenomic sequencing coupled with de novo 
reconstruction of genomic fragments. Though available 
studies report the cross-reservoir similarities and likely 
transmission of AMR in a One Health setting, there is a 
need for more in-depth characterization of AMR trans-
mission mechanisms, including methods to determine 
and classify transmission. 

Conclusions 
AMR is an ever-present concern, not necessarily due to 
the use of antibiotics alone, but also due to anthro-
pogenic impact and rapid globalization. A major chal-
lenge still faced by most One Health studies is 
attributing the directionality of ARGs between the dif-
ferent metagenomes. To accurately reconstruct the 
patterns of transmission, especially the directionality of 
transmission, approaches combining (meta)genomic data 
analysis, including phylogenetic analysis, with epide-
miological approaches and time series, are needed. Since 
it is evident that AMR reservoirs may affect each other 
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and given the potential role of human and animal mi-
crobiomes in AMR, understanding the interactions/me-
chanisms and role of each component contributing to the 
spread of AMR is a critical step in monitoring and ad-
dressing this challenge for human health and well-being. 
Recognizing the microbial reservoirs of AMR is an im-
portant first step toward this goal. Furthermore, com-
bined methods incorporating the identity of ARGs, 
modes of transmission, and integration into the in-
dividual reservoirs, alongside crossover mechanisms, 
may be needed for comprehensive characterization of 
AMR dissemination. Given the dynamic interactions 
between humans, animals, and the environment, in-
formation on directionality in the One Health context 
will propel better understanding and management of the 
different reservoirs, especially in terms of anthropogenic 
effects. This will allow better antibiotic stewardship 
contributing to effective treatments using existing anti-
biotics. 
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