No full text
Unpublished conference/Abstract (Scientific congresses, symposiums and conference proceedings)
Predicting depression in old age: Combining life course data with machine learning
MONTORSI, Carlotta; FUSCO, Alessio; VAN KERM, Philippe et al.
2022Well-Being conference
 

Files


Full Text
No document available.
Annexes
conferece_STATEC_final.pdf
(1.21 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Depression; Machine Learning; Aging
Research center :
LISER - Luxembourg Institute of Socio-Economic Research
Disciplines :
Special economic topics (health, labor, transportation...)
Author, co-author :
MONTORSI, Carlotta ;  University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE)
FUSCO, Alessio ;  University of Luxembourg > Faculty of Language and Literature, Humanities, Arts and Education (FLSHASE)
VAN KERM, Philippe  ;  University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Social Sciences (DSOC)
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
External co-authors :
no
Language :
English
Title :
Predicting depression in old age: Combining life course data with machine learning
Publication date :
03 June 2022
Event name :
Well-Being conference
Event organizer :
STATEC
Event date :
from 01.06.2022 to 4.06.2022
Audience :
International
FnR Project :
FNR12252781 - Data-driven Computational Modelling And Applications, 2017 (01/09/2018-28/02/2025) - Andreas Zilian
Name of the research project :
Predictive well-being in old age
Funders :
FNR - Fonds National de la Recherche
Available on ORBilu :
since 08 April 2023

Statistics


Number of views
113 (3 by Unilu)
Number of downloads
9 (0 by Unilu)

Bibliography


Similar publications



Contact ORBilu