

Predicting Depression in Old Age: combining life course data with machine learning

Well-Being Conference

June 1-4, 2022, Luxembourg

Carlotta Montorsi

Alessio Fusco¹ Philippe Van Kerm ^{1 2} Stephane Bordas²

¹Luxembourg Institute of Socio-Economic Research (LISER)

²University of Luxembourg

Motivation

 Population ageing is one of the key challenges of our times. The share of the EU population above the age of 65 is expected to reach almost 25% by 2050 (starting from 19.2% in 2016)

Motivation

- Population ageing is one of the key challenges of our times. The share of the EU population above the age of 65 is expected to reach almost 25% by 2050 (starting from 19.2% in 2016)
- Depression in old age is common. In Europe 8.9% of those among 55-64 years old and 8.6% of those 65+ suffer of chronic depression (EUROSTAT, 2019)
- Depression is an independent predictor of other major diseases: Alzheimer, dementia and diabetes
- Depression is costly. Annual cost of depression in Europe: 253 euros per inhabitants → 1% of the total economy of Europe (P. Sobocki, B. Jönsson, J. Angst, C. Rehnberg, 2006)
- Depression in old age is both under-diagnosed and under-treated in primary care settings

 Prevention strategies and improvements in early identification are essential (WHO, 2016).

- Prevention strategies and improvements in early identification are essentia (WHO, 2016).
- Predicting depression is a challenge
 - Lack of bio-markers/risk factors
 - Humans subjectivity

- Prevention strategies and improvements in early identification are essential (WHO, 2016).
- Predicting depression is a challenge
 - Lack of bio-markers/risk factors
 - Humans subjectivity
- Could we predict clinical depression from past life trajectories? Which data do we need?

- Prevention strategies and improvements in early identification are essential (WHO, 2016).
- Predicting depression is a challenge
 - Lack of bio-markers/risk factors
 - Humans subjectivity
- Could we predict clinical depression from past life trajectories? Which data do we need?
- Are there differences in depression patterns among females and males?

Table of contents

- 1. Data
- 2. Methods
- 3. Results

Data

Data Source/Subjects

- The Survey of Health, Ageing and Retirement in Europe (SHARE).
- Retrospective information are collected in SHARELIFE (SL) questionnaire: wave 3 and wave 7.

- We discard:
 - 1. respondents aged 89 +. Problem of recall bias.
 - 2. respondents that provide little attention during the interview
 - 3. respondents with missing variables in depression symptoms across all waves

Measurements framework

Figure 1: Measurements framework

Depression in SHARE

Figure 2: Depression prevalence across genders. Colors represent ventiles of the depression distributions in the pooled sample

- Depression in SHARE is measured by the 12 questions that compose the euro-D instrument: good test-retest reliability and internal consistency (Prince, 1999a).
- Clinical depression threshold: euro-D scale score of 4 or higher is categorized
 as case of depression (1) and a scale score below 4 as not depressed (0) (M.
 Prince et al., 1999b; E. Castro-Costa, M. Dewey et al., 2008)

Life Trajectories

- A life trajectory is defined as the long-term pattern of stability and change, which usually involves multiple transitions. Along this trajectory, each individual may experience many events, either positive or negative.
- Two approaches to represent a life trajectory:
 - Indicators of trajectories, such as whether the respondent experienced the birth of a child and when this event occurred
 - interpretation of the results (+)
 - limited number (-)
 - reduction of complexity (-)

Life Trajectories

- A life trajectory is defined as the long-term pattern of stability and change, which usually involves multiple transitions. Along this trajectory, each individual may experience many events, either positive or negative.
- Two approaches to represent a life trajectory:
 - Indicators of trajectories, such as whether the respondent experienced the birth of a child and when this event occurred

```
    interpretation of the results (+)
    limited number (-)
```

- reduction of complexity (-)
- 2. Sequences (A. Abbot, 1995):
 - 2.1 Holistic view over the life course (+)
 - 2.2 More information (+)
 - 2.3 Suitable for different representations (+)
 - 2.4 Less interpretable than typical predictors (-)

Sequences

Sequences representation

- In Social Science applications, sequences have been made operational in two ways:
 - 1. Clusters or Type: distinct groups of individuals' having similar life patterns

 Example cluster
 - Sequences features: timing, duration, sequencing, entropy (M. Studer, G. Ritschard, 2016, D. Bolano et al. 2020)
- We try also an unstructured representation. Example unstructured

Methods

Machine learning methods

Figure 4: Predictive models explored in the analysis

Train-test split approach:

 $1. \ \ \, \text{Training sets: } 80\% \ \text{sample; test set: } 20\% \ \text{sample}$

Train-test split approach:

- 1. Training sets: 80% sample; test set: 20% sample
- 2. Models' hyper-parameters: random/grid search + stratified 10-folds cross validation

Train-test split approach:

- 1. Training sets: 80% sample; test set: 20% sample
- Models' hyper-parameters: random/grid search + stratified 10-folds cross validation
- 3. Select models hyper-parameters that maximize the Area Under the ROC curve

Train-test split approach:

- 1. Training sets: 80% sample; test set: 20% sample
- 2. Models' hyper-parameters: random/grid search + stratified 10-folds cross validation
- 3. Select models hyper-parameters that maximize the Area Under the ROC curve
- 4. Compare models' performance on the test set: sensitivity and accuracy

Population: depressed, not depressed

Prediction: depressed, not depressed

- Sensitivity: $\frac{TP}{TP+FN} \rightarrow \frac{2}{2+2} = 0.5$
- Accuracy: $\frac{TP+TN}{TP+TN+FP+FN} \to \frac{2+4}{10} = 0.6$

Population: depressed, not depressed

Prediction: depressed, not depressed

- Sensitivity: $\frac{TP}{TP+FN} \rightarrow \frac{2}{2+2} = 0.5$
- Accuracy: $\frac{TP+TN}{TP+TN+FP+FN} \rightarrow \frac{2+4}{10} = 0.6$

Population: depressed, not depressed

Prediction: depressed, not depressed

False Negative (FN)

True negative (TN) False Positive (FP)

Population: depressed, not depressed

Prediction: depressed, not depressed False Negative (FN)

True negative (TN) False Positive (FP)

• Sensitivity: $\frac{TP}{TP+FN} \rightarrow \frac{2}{2+2} = 0.5$

• Accuracy:
$$\frac{TP+TN}{TP+TN+FP+FN} \rightarrow \frac{2+4}{10} = 0.6$$

Results

Models' sensitivity

Figure 5: Sensitivity across models and input structures. Red dots indicates TEST error, box plots the distribution of 10-folds training errors. Female sample

- Sensitivity of the random forest increases along with the increasing dimensionality of the input structure.
- The random forest combined with the unstructured sequence representation achieves 68% of sensitivity in the test sample

Models' accuracy

Figure 6: Sensitivity across models and input structures. Red dots indicates TEST error, box plots the distribution of 10-folds validation errors across countries. Male sample

- The random forest combined with the sequence features achieve the highest test sensitivity and accuracy.
- Random forest: problem of overfitting

Figure 7: Top 30. Random forest Shapely values, female sample

Figure 7: Top 30. Random forest Shapely values, female sample

Figure 7: Top 30. Random forest Shapely values, female sample

Figure 7: Top 30. Random forest Shapely values, female sample

Figure 8: Top 30. Random forest Shapely values, male sample

Conclusion

- Depression is predictable from past life trajectories, up to a certain threshold
- The data required for achieving the highest predictive performance is more complex than what has been traditionally used in well-being studies
- We identify idiosyncratic and common patterns across genders
- Interpretable machine learning tools may support the hypothesis creation process

Thank you for your attention! carlotta.montorsi@liser.lu

Example clusters

Figure 9: Clusters of emotional events, female sample

ID	age	Emotion: Type 1	Emotion: Type 2	Emotion: Type 3	
1	56	1	0	0	
2	53	0	1	0	 sequence representation
3	63	1	0	0	
		l			

Example Features

ID	Duration BC	Duration ST	Duration Rur	LT → BC	LT → Rur → BC	Age(20-25) Rur	Entropy	
1	24	0	5	1	1	1	0.76	
2	7	1	0	1	0	0	0.5	
3	6	5	6	0	0	0	1.25	

sequence representation

Example Unstructured

ID	Age15: Big city	Age15: Large Town	Age15: Small tows	Age15: Rural Area	Age15: Suburbs	Age15: Missing	
1	0	1	0	0	0	0	
2	0	1	0	0	0	0	
3	0	0	0	1	0	0	

sequence representation