Article (Périodiques scientifiques)
Reconstruct the biomass particles fields in the particle-fluid problem using continuum methods by applying the physics-informed neural network
DARLIK, Fateme; PETERS, Bernhard
2023In Results in Engineering, 17, p. 100917
Peer reviewed
 

Documents


Texte intégral
1-s2.0-S2590123023000440-main.pdf
Postprint Éditeur (3.01 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Physics-informed neural network; Discrete element method; Continuum approach; Biomass source; Particle-fluid problem
Résumé :
[en] The motion of particles in the moving grate combustion chamber is used as the case study. These problems are categorized as particle-fluid problems. They are typically solved using Lagrangian-Eulerian methods, one of which is the coupling between the discrete element method (DEM, which is applied to the particles phase) and the computational fluid dynamics method (CFD, which is applied to the fluid phase). The current study's objective is to avoid coupling and instead, focusing on using the CFD method only. There are dense piles of particles moving on the grates in the biomass combustion chamber. We assumed the dense particles' behaviors similar to the fluid, and then, applied the fluid governing equations to the particles phase. The virtual fields of the velocities, pressure and density are specified for the particles' phase. Afterward, the physics-informed neural network (PINN) is used to reconstruct particles' fields and additionally to investigate the capability of the predicted fields to satisfy the fluid governing equations. This model has the benefit of reconstructing the particles' fields without the need for boundaries and initial conditions. The precision of the model is assessed by comparing the test data set with the exact data obtained from the eXtended discrete element method (XDEM is an in-house software). It is demonstrated that the trained neural network delivered high accuracy and is capable of predicting all outputs with an error value of less than 2 percent. Additionally, to choose the optimum architecture for the neural network, the effect of the number of hidden layers and neurons is studied.
Disciplines :
Ingénierie mécanique
Auteur, co-auteur :
DARLIK, Fateme ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
PETERS, Bernhard ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Reconstruct the biomass particles fields in the particle-fluid problem using continuum methods by applying the physics-informed neural network
Date de publication/diffusion :
2023
Titre du périodique :
Results in Engineering
Maison d'édition :
Elsevier
Volume/Tome :
17
Pagination :
100917
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR12252781 - Data-driven Computational Modelling And Applications, 2017 (01/09/2018-28/02/2025) - Andreas Zilian
Disponible sur ORBilu :
depuis le 16 mars 2023

Statistiques


Nombre de vues
189 (dont 8 Unilu)
Nombre de téléchargements
1 (dont 1 Unilu)

citations Scopus®
 
9
citations Scopus®
sans auto-citations
9
citations OpenAlex
 
9
citations WoS
 
8

Bibliographie


Publications similaires



Contacter ORBilu