[en] Metastasis is the most common cause of death in cancer patients. Canonical drugs target mainly the proliferative capacity of cancer cells, which leaves slow-proliferating, persistent cancer cells unaffected. Metabolic determinants that contribute to growth-independent functions are still poorly understood. Here we show that antifolate treatment results in an uncoupled and autarkic mitochondrial one-carbon (1C) metabolism during cytosolic 1C metabolism impairment. Interestingly, antifolate dependent growth-arrest does not correlate with decreased migration capacity. Therefore, using methotrexate as a tool compound allows us to disentangle proliferation and migration to profile the metabolic phenotype of migrating cells. We observe that increased serine de novo synthesis (SSP) supports mitochondrial serine catabolism and inhibition of SSP using the competitive PHGDH-inhibitor BI-4916 reduces cancer cell migration. Furthermore, we show that sole inhibition of mitochondrial serine catabolism does not affect primary breast tumor growth but strongly inhibits pulmonary metastasis. We conclude that mitochondrial 1C metabolism, despite being dispensable for proliferative capacities, confers an advantage to cancer cells by supporting their motility potential.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Kiweler, Nicole; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Delbrouck, Catherine; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
POZDEEV, Vitaly ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Neises, Laura; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Soriano-Bague, Leticia; Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de Université, Esch-sur-Alzette, Luxembourg.
Eiden, Kim; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Xian, Feng; Proteomics of cellular signaling, Department of Infection and Immunity, Luxembourg Institute of Health,1a Rue Thomas Edison, Strassen, Luxembourg
Benzarti, Mohaned; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Haase, Lara; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
KONCINA, Eric ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
SCHMOETTEN, Maryse ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
JÄGER, Christian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Scientific Central Services > Metabolomics Platform
Zaeem Noman, Muhammad; Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Vazquez, Alexei; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
Janji, Bassam; Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
DITTMAR, Gunnar ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC)
BRENNER, Dirk ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Immunology and Genetics
LETELLIER, Elisabeth ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Meiser, Johannes; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019). DOI: 10.3322/caac.21551
Luengo, A., Gui, D. Y. & Vander, M. G. Heiden, targeting metabolism for cancer therapy. Cell Chem. Biol. 24, 1161–1180 (2017). DOI: 10.1016/j.chembiol.2017.08.028
Counihan, J. L., Grossman, E. A. & Nomura, D. K. Cancer metabolism: current understanding and therapies. Chem. Rev. 118, 6893–6923 (2018). DOI: 10.1021/acs.chemrev.7b00775
Bergers, G. and S. M. Fendt, The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21(3),162–180 (2021).
Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013). DOI: 10.1038/nrc3557
Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet 43, 869–874 (2011). DOI: 10.1038/ng.890
Pollari, S. et al. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat. 125, 421–430 (2011). DOI: 10.1007/s10549-010-0848-5
Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011). DOI: 10.1038/nature10350
Pacold, M. E. et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat. Chem. Biol. 12, 452–458 (2016). DOI: 10.1038/nchembio.2070
Tajan, M. et al. Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nat. Commun. 12, 366 (2021). DOI: 10.1038/s41467-020-20223-y
Wang, Q. et al. Rational design of selective allosteric inhibitors of PHGDH and serine synthesis with anti-tumor activity. Cell Chem. Biol. 24, 55–65 (2017). DOI: 10.1016/j.chembiol.2016.11.013
Weinstabl, H. et al. Intracellular trapping of the selective phosphoglycerate dehydrogenase (PHGDH) inhibitor bi-4924 disrupts serine biosynthesis. J. Med Chem. 62, 7976–7997 (2019). DOI: 10.1021/acs.jmedchem.9b00718
Maddocks, O. D. K. et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544, 372–376 (2017). DOI: 10.1038/nature22056
Ngo, B. et al. Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH inhibition. Cancer Disco. 10, 1352–1373 (2020). DOI: 10.1158/2159-8290.CD-19-1228
Mullarky, E. et al. Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc. Natl Acad. Sci. USA 113, 1778–1783 (2016). DOI: 10.1073/pnas.1521548113
Ducker, G. S. et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 24, 640–641 (2016). DOI: 10.1016/j.cmet.2016.09.011
Lee, W. D. et al. Tumor reliance on cytosolic versus mitochondrial one-carbon flux depends on folate availability. Cell Metab. 33, 190–198.e6 (2021). DOI: 10.1016/j.cmet.2020.12.002
Morscher, R. J. et al. Mitochondrial translation requires folate-dependent tRNA methylation. Nature 554, 128–132 (2018). DOI: 10.1038/nature25460
Minton, D. R. et al. Serine catabolism by SHMT2 is required for proper mitochondrial translation initiation and maintenance of formylmethionyl-tRNAs. Mol. Cell 69(4), 610–621.e5 (2018). DOI: 10.1016/j.molcel.2018.01.024
Zheng, Y. et al. Mitochondrial one-carbon pathway supports cytosolic folate integrity in cancer cells. Cell 175(6), 1546–1560.e17 (2018). DOI: 10.1016/j.cell.2018.09.041
Meiser, J. et al. Serine one-carbon catabolism with formate overflow. Sci. Adv. 2(10), e1601273 (2016). DOI: 10.1126/sciadv.1601273
Meiser, J. et al. Increased formate overflow is a hallmark of oxidative cancer. Nat. Commun. 9(1), 1368 (2018). DOI: 10.1038/s41467-018-03777-w
Rossi, M., et al., Heterogeneity in PHGDH protein expression potentiates cancer cell dissemination and metastasis. https://doi.org/10.1101/2021.01.24.427949 (2021).
Samanta, D. et al. PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance, and lung metastasis. Cancer Res 76, 4430–4442 (2016). DOI: 10.1158/0008-5472.CAN-16-0530
Rinaldi, G. et al. In vivo evidence for serine biosynthesis-defined sensitivity of lung metastasis, but not of primary breast tumors, to mTORC1 inhibition. Mol. Cell 81, 386–397.e7 (2021). DOI: 10.1016/j.molcel.2020.11.027
Stoller, R. G. et al. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N. Engl. J. Med 297, 630–634 (1977). DOI: 10.1056/NEJM197709222971203
Chabner, B. A. & Young, R. C. Threshold methotrexate concentration for in vivo inhibition of DNA synthesis in normal and tumorous target tissues. J. Clin. Invest 52, 1804–1811 (1973). DOI: 10.1172/JCI107362
Huang, S. et al. Study on relationships of tumor status and gene polymorphism with blood concentration of MTX and toxicities in 63 pediatric mature B cell lymphoma in chinese population. Technol. Cancer Res Treat. 20, 1533033821995288 (2021).
Kawakatsu, S. et al. Population pharmacokinetic analysis of high-dose methotrexate in pediatric and adult oncology patients. Cancer Chemother. Pharm. 84, 1339–1348 (2019). DOI: 10.1007/s00280-019-03966-4
Phillips, D. C., Woollard, K. J. & Griffiths, H. R. The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species. Br. J. Pharm. 138, 501–511 (2003). DOI: 10.1038/sj.bjp.0705054
Soula, M. et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat. Chem. Biol. 16, 1351–1360 (2020). DOI: 10.1038/s41589-020-0613-y
Wu, S. et al. Activation of RSK2 upregulates SOX8 to promote methotrexate resistance in gestational trophoblastic neoplasia. Lab Invest. 2021.
AlBasher, G. et al. Methotrexate-induced apoptosis in human ovarian adenocarcinoma SKOV-3 cells via ROS-mediated bax/bcl-2-cyt-c release cascading. Onco Targets Ther. 12, 21–30 (2019). DOI: 10.2147/OTT.S178510
Garcia-Sanchez, A., Miranda-Diaz, A. G. & Cardona-Munoz, E. G. The role of oxidative stress in physiopathology and pharmacological treatment with pro- and antioxidant properties in chronic diseases. Oxid. Med Cell Longev. 2020, 2082145 (2020). DOI: 10.1155/2020/2082145
Babiak, R. M. et al. Methotrexate: pentose cycle and oxidative stress. Cell Biochem Funct. 16, 283–293 (1998). DOI: 10.1002/(SICI)1099-0844(1998120)16:4<283::AID-CBF801>3.0.CO;2-E
Lignitto, L. et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 178, 316–329 e18 (2019). DOI: 10.1016/j.cell.2019.06.003
Wiel, C. et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330–345 e22 (2019). DOI: 10.1016/j.cell.2019.06.005
Benzarti, M. et al. Metabolic potential of cancer cells in context of the metastatic cascade. Cells 9, 2035 (2020)
Nguyen, H. L. et al. Oxidative stress and prostate cancer progression are elicited by membrane-type 1 matrix metalloproteinase. Mol. Cancer Res 9, 1305–1318 (2011). DOI: 10.1158/1541-7786.MCR-11-0033
Rhyu, D. Y. et al. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J. Am. Soc. Nephrol. 16, 667–675 (2005). DOI: 10.1681/ASN.2004050425
Chen, D. et al. MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1alpha-TWIST signaling axis in breast cancer. Oncotarget 6, 32701–32712 (2015). DOI: 10.18632/oncotarget.4702
Reczek, C. R. & Chandel, N. S. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 33, 8–13 (2015). DOI: 10.1016/j.ceb.2014.09.010
Hunter, M. V. et al. Oxidative stress orchestrates cell polarity to promote embryonic wound healing. Dev. Cell 47, 377–387 e4 (2018). DOI: 10.1016/j.devcel.2018.10.013
Porporato, P. E. et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 8, 754–766 (2014). DOI: 10.1016/j.celrep.2014.06.043
Piperigkou, Z. et al. Key matrix remodeling enzymes: functions and targeting in cancer. Cancers (Basel), 13(6):1441 (2021)
Kawami, M. et al. Methotrexate-induced epithelial-mesenchymal transition in the alveolar epithelial cell line A549. Lung 194, 923–930 (2016). DOI: 10.1007/s00408-016-9935-7
Ohbayashi, M. et al. Involvement of epithelial-mesenchymal transition in methotrexate-induced pulmonary fibrosis. J. Toxicol. Sci. 39, 319–330 (2014). DOI: 10.2131/jts.39.319
Vazquez, A. et al. Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited. BMC Syst. Biol. 4, 58 (2010). DOI: 10.1186/1752-0509-4-58
Diehl, F. F. et al. Cellular redox state constrains serine synthesis and nucleotide production to impact cell proliferation. Nat. Metab. 1, 861–867 (2019). DOI: 10.1038/s42255-019-0108-x
Vande Voorde, J. et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci. Adv. 5, eaau7314 (2019). DOI: 10.1126/sciadv.aau7314
Palm, W. & Thompson, C. B. Nutrient acquisition strategies of mammalian cells. Nature 546, 234–242 (2017). DOI: 10.1038/nature22379
Tibbetts, A. S. & Appling, D. R. Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu Rev. Nutr. 30, 57–81 (2010). DOI: 10.1146/annurev.nutr.012809.104810
Burgos-Barragan, G. et al. Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism. Nature 548, 549–554 (2017). DOI: 10.1038/nature23481
Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–U171 (2012). DOI: 10.1038/nature10642
Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381), 380–384 (2011). DOI: 10.1038/nature10602
Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015). DOI: 10.1038/nature15726
Lawrence, S. A. et al. Mammalian mitochondrial and cytosolic folylpolyglutamate synthetase maintain the subcellular compartmentalization of folates. J. Biol. Chem. 289, 29386–29396 (2014). DOI: 10.1074/jbc.M114.593244
Lowe, K. E. et al. Regulation of folate and one-carbon metabolism in mammalian cells. II. Effect of folylpoly-gamma-glutamate synthetase substrate specificity and level on folate metabolism and folylpoly-gamma-glutamate specificity of metabolic cycles of one-carbon metabolism. J. Biol. Chem. 268, 21665–21673 (1993). DOI: 10.1016/S0021-9258(20)80593-6
Horne, D. W., Holloway, R. S. & Said, H. M. Uptake of 5-formyltetrahydrofolate in isolated rat liver mitochondria is carrier-mediated. J. Nutr. 122, 2204–2209 (1992). DOI: 10.1093/jn/122.11.2204
den Boer, E. et al. Determinants of erythrocyte methotrexate polyglutamate levels in rheumatoid arthritis. J. Rheumatol. 41, 2167–2178 (2014). DOI: 10.3899/jrheum.131290
Zhu, T. et al. Investigation of potential drug-drug interactions between peficitinib (ASP015K) and methotrexate in patients with rheumatoid arthritis. Clin. Drug Investig. 40, 827–838 (2020). DOI: 10.1007/s40261-020-00937-z
Soflaee, M. H. et al. Purine nucleotide depletion prompts cell migration by stimulating the serine synthesis pathway. Nat. Commun. 10.1038/s41467-022-30362-z (2022).
Hiller, K. et al. MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal. Chem. 81, 3429–3439 (2009). DOI: 10.1021/ac802689c
Dranka, B. P. et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic. Biol. Med 51, 1621–1635 (2011). DOI: 10.1016/j.freeradbiomed.2011.08.005
Kocaturk, B. & Versteeg, H. H. Orthotopic injection of breast cancer cells into the mammary fat pad of mice to study tumor growth. J. Vis. Exp. 8(96), 51967 (2015).