[en] In this paper, we present an evolved version of the Situational Graphs, which jointly models in a single optimizable factor graph, a SLAM graph, as a set of robot keyframes, containing its associated measurements and robot poses, and a 3D scene graph, as a high-level representation of the environment that encodes its different geometric elements with semantic attributes and the relational information between those elements. Our proposed S-Graphs+ is a novel four-layered factor graph that includes: (1) a keyframes layer with robot pose estimates, (2) a walls layer representing wall surfaces, (3) a rooms layer encompassing sets of wall planes, and (4) a floors layer gathering the rooms within a given floor level. The above graph is optimized in real-time to obtain a robust and accurate estimate of the robot's pose and its map, simultaneously constructing and leveraging the high-level information of the environment. To extract such high-level information, we present novel room and floor segmentation algorithms utilizing the mapped wall planes and free-space clusters. We tested S-Graphs+ on multiple datasets including, simulations of distinct indoor environments, on real datasets captured over several construction sites and office environments, and on a real public dataset of indoor office environments. S-Graphs+ outperforms relevant baselines in the majority of the datasets while extending the robot situational awareness by a four-layered scene model. Moreover, we make the algorithm available as a docker file.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
BAVLE, Hriday ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
SANCHEZ LOPEZ, Jose Luis ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
SHAHEER, Muhammad ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Civera, Javier
VOOS, Holger ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
S-Graphs+: Real-time Localization and Mapping leveraging Hierarchical Representations
Date de publication/diffusion :
juin 2023
Titre du périodique :
IEEE Robotics and Automation Letters
eISSN :
2377-3766
Maison d'édition :
Institute of Electrical and Electronics Engineers, New York, Etats-Unis - New York
H. Bavle, J. L. Sanchez-Lopez, C. Cimarelli, A. Tourani, and H. Voos, "From SLAM to situational awareness: Challenges and survey, " Sensors, vol. 23, no. 10, 2023, Art. no. 4849. [Online]. Available: Https: //www. mdpi. com/1424-8220/23/10/4849
I. Armeni et al., "3D scene graph: A structure for unified semantics, 3D space, and camera, " in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 5664-5673.
A. Rosinol, A. Gupta, M. Abate, J. Shi, and L. Carlone, "3D dynamic scene graphs: Actionable spatial perception with places, objects, and humans, " in Proc. Robot.: Sci. Syst., 2020.
S.-C. Wu, J. Wald, K. Tateno, N. Navab, and F. Tombari, "Scenegraphfusion: Incremental 3D scene graph prediction from RGB-D sequences, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 7515-7525.
N. Hughes, Y. Chang, and L. Carlone, "Hydra: A real-time spatial perception system for 3D scene graph construction and optimization, " in Proc. Robot.: Sci. Syst., 2022.
J. Zhang and S. Singh, "LOAM: LiDAR odometry and mapping in realtime, " in Proc. Robot.: Sci. Syst., 2014.
H. Wang, C. Wang, C. Chen, and L. Xie, "F-LOAM: Fast LiDARodometry and mapping, " in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021. pp. 4390-4396.
T. Shan and B. Englot, "LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain, " in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 4758-4765.
H. Bavle, J. L. Sanchez-Lopez, M. Shaheer, J. Civera, and H. Voos, "Situational graphs for robot navigation in structured indoor environments, " IEEE Robot. Automat. Lett., vol. 7, no. 4, pp. 9107-9114, Oct. 2022.
J. Jiao, H. Ye, Y. Zhu, and M. Liu, "Robust odometry and mapping for multi-LiDAR systems with online extrinsic calibration, " IEEE Trans. Robot., vol. 38, no. 1, pp. 351-371, Feb. 2022.
K. Koide, J. Miura, and E. Menegatti, "A portable three-dimensional LIDAR-based system for long-term and wide-area people behavior measurement, " Int. J. Adv. Robot. Syst., vol. 16, no. 2, Mar. 2019, Art. no. 1729881419841532.
R. Dubé et al., "SegMap: Segment-based mapping and localization using data-driven descriptors, " Int. J. Robot. Res., vol. 39, no. 2-3, pp. 339-355, Jul. 2019.
X. Chen, A. Milioto, E. Palazzolo, P. Giguére, J. Behley, and C. Stachniss, "SuMa++: Efficient LiDAR-based semantic SLAM, " in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019, pp. 4530-4537.
U.-H. Kim, J.-M. Park, T. jin Song, and J.-H. Kim, "3-D scene graph: A sparse and semantic representation of physical environments for intelligent agents, " IEEE Trans. Cybern., vol. 50, no. 12, pp. 4921-4933, Dec. 2020.
J. Wald, H. Dhamo, N. Navab, and F. Tombari, "Learning 3D semantic scene graphs from 3D indoor reconstructions, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 3961-3970.
R. Bormann, F. Jordan, W. Li, J. Hampp, and M. Hägele, "Room segmentation: Survey, implementation, and analysis, " in Proc. IEEE Int. Conf. Robot. Automat., 2016, pp. 1019-1026.
M. Mielle, M. Magnusson, and A. J. Lilienthal, "A method to segment maps from different modalities using free space layout maoris: Map of ripples segmentation, " in Proc. IEEE Int. Conf. Robot. Automat., 2018, pp. 4993-4999.
F. Foroughi, J. Wang, A. Nemati, Z. Chen, and H. Pei, "MapSegNet: A fully automated model based on the encoder-decoder architecture for indoor map segmentation, " IEEE Access, vol. 9, pp. 101530-101542, 2021.
M. Luperto, T. P. Kucner, A. Tassi, M. Magnusson, and F. Amigoni, "Robust structure identification and room segmentation of cluttered indoor environments from occupancy grid maps, " IEEE Robot. Automat. Lett., vol. 7, no. 3, pp. 7974-7981, Jul. 2022.
I. Armeni et al., "3D semantic parsing of large-scale indoor spaces, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1534-1543.
R. Ambrus, S. Claici, and A. Wendt, "Automatic room segmentation from unstructured 3-D data of indoor environments, " IEEE Robot. Automat. Lett., vol. 2, no. 2, pp. 749-756, Apr. 2017.
S. Ochmann, R. Vock, and R. Klein, "Automatic reconstruction of fully volumetric 3D building models from oriented point clouds, " ISPRS J. Photogrammetry Remote Sens., vol. 151, pp. 251-262, 2019.
H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, "Voxblox: Incremental 3D euclidean signed distance fields for on-board MAV planning, " in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 1366-1373.
H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, "Sparse3Dtopological graphs for micro-aerial vehicle planning, " in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 1-9.
J. Clark and D. A. Holton, A First Look At Graph Theory. Singapore: World Scientific, 1991.
K. Koide, M. Yokozuka, S. Oishi, and A. Banno, "Voxelized GICP for fast and accurate 3D point cloud registration, " in Proc. IEEE Int. Conf. Robot. Automat., 2021, pp. 11054-11059.
L. Qingqing, Y. Xianjia, J. P. Queralta, and T. Westerlund, "Multi-modal LiDAR dataset for benchmarking general-purpose localization and mapping algorithms, " in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 3837-3844.