Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Federated Learning-based Inter-slice Attack Detection for 5G-V2X Sliced Networks
BOUALOUACHE, Abdelwahab; ENGEL, Thomas
2022In BOUALOUACHE, Abdelwahab; ENGEL, Thomas (Eds.) 2022 IEEE 96th Vehicular Technology Conference: (VTC2022-Fall)
Peer reviewed
 

Documents


Texte intégral
[Camera_Ready] Federated_learning_based_inter_slice_Attack_Detection_for_5G_V2X_Slicing_networks.pdf
Postprint Auteur (295.68 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
5G-V2X; Network Slicing; Security; Machine learning; Misbehaving Detection Systems
Résumé :
[en] As a leading enabler of 5G, Network Slicing (NS) aims at creating multiple virtual networks on the same shared and programmable physical infrastructure. Integrated with 5G-Vehicle-to-Everything (V2X) technology, NS enables various isolated 5G-V2X networks with different requirements such as autonomous driving and platooning. This combination has generated new attack surfaces against Connected and Automated Vehicles (CAVs), leading them to road hazards and putting users' lives in danger. More specifically, such attacks can either intra-slice targeting the internal service within each V2X Network Slice (V2X-NS) or inter-slice targeting the cross V2X-NSs and breaking the isolation between them. However, detecting such attacks is challenging, especially inter-slice V2X attacks where security mechanisms should maintain privacy preservation and NS isolation. To this end, this paper addresses detecting inter-slice V2X attacks. To do so, we leverage both Virtual Security as a Service (VSaS) concept and Deep learning (DL) together with Federated learning (FL) to deploy a set of DL-empowered security Virtual Network Functions (sVNFs) over V2X-NSs. Our privacy preservation scheme is hierarchical and supports FL-based collaborative learning. It also integrates a game-theory-based mechanism to motivate FL clients (CAVs) to provide high-quality DL local models. We train, validate, and test our scheme using a publicly available dataset. The results show our scheme's accuracy and efficiency in detecting inter-slice V2X attacks.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
BOUALOUACHE, Abdelwahab ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
ENGEL, Thomas ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Federated Learning-based Inter-slice Attack Detection for 5G-V2X Sliced Networks
Date de publication/diffusion :
septembre 2022
Nom de la manifestation :
2022 IEEE 96th Vehicular Technology Conference: (VTC2022-Fall)
Date de la manifestation :
26-29 September 2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
2022 IEEE 96th Vehicular Technology Conference: (VTC2022-Fall)
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR14891397 - Intelligent Orchestrated Security And Privacy-aware Slicing For 5g And Beyond Vehicular Networks, 2020 (01/04/2021-31/03/2024) - Thomas Engel
Disponible sur ORBilu :
depuis le 10 février 2023

Statistiques


Nombre de vues
163 (dont 5 Unilu)
Nombre de téléchargements
263 (dont 4 Unilu)

citations Scopus®
 
11
citations Scopus®
sans auto-citations
8

Bibliographie


Publications similaires



Contacter ORBilu