USLU, Sinan ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
Vögele, Claus ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
External co-authors :
no
Language :
English
Title :
The more, the better? Learning rate and self-pacing in neurofeedback enhance cognitive performance in healthy adults
Publication date :
17 January 2023
Journal title :
Frontiers in Human Neuroscience
eISSN :
1662-5161
Publisher :
Frontiers Media S.A., Lausanne, Switzerland
Peer reviewed :
Peer Reviewed verified by ORBi
FnR Project :
FNR12252781 - Data-driven Computational Modelling And Applications, 2017 (01/09/2018-28/02/2025) - Andreas Zilian
Alkoby O. Abu-Rmileh A. Shriki O. Todder D. (2018). Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning. Neuroscience 378 155–164. 10.1016/j.neuroscience.2016.12.050 28069531
Autenrieth M. Kober S. E. Neuper C. Wood G. (2020). How much do strategy reports tell about the outcomes of neurofeedback training? A study on the voluntary up-regulation of the sensorimotor rhythm. Front. Hum. Neurosci. 14:218. 10.3389/fnhum.2020.00218 32587509
Bates D. Mächler M. Bolker B. Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 1–48. 10.18637/jss.v067.i01
Bowie C. R. Harvey P. D. (2006). Administration and interpretation of the trail making test. Nat. Protoc. 1 2277–2281. 10.1038/nprot.2006.390 17406468
Enriquez-Geppert S. Huster R. J. Herrmann C. S. (2017). EEG-neurofeedback as a tool to modulate cognition and behavior: a review tutorial. Front. Hum. Neurosci. 11:51. 10.3389/fnhum.2017.00051 28275344
Eschmann K. C. J. Riedel L. Mecklinger A. (2022). Theta neurofeedback training supports motor performance and flow experience. J. Cogn. Enhanc. 6 434–450. 10.1007/s41465-021-00236-1 35966366
Escolano C. Navarro-Gil M. Garcia-Campayo J. Minguez J. (2014). The effects of a single session of upper alpha neurofeedback for cognitive enhancement: a sham-controlled study. Appl. Psychophysiol. Biofeedback 39 227–236. 10.1007/s10484-014-9262-9 25267413
Ganis G. Kievit R. (2015). A new set of three-dimensional shapes for investigating mental rotation processes: validation data and stimulus set. J. Open Psychol. Data 3:e3. 10.5334/jopd.ai
Garcia Pimenta M. Brown T. Arns M. Enriquez-Geppert S. (2021). Treatment efficacy and clinical effectiveness of EEG neurofeedback as a personalized and multimodal treatment in ADHD: a critical review. Neuropsychiatr. Dis. Treat. 17 637–648. 10.2147/NDT.S251547 33658785
Gramfort A. Luessi M. Larson E. Engemann D. A. Strohmeier D. Brodbeck C. et al. (2013). MEG and EEG data analysis with MNE-python. Front. Neurosci. 7:267. 10.3389/fnins.2013.00267 24431986
Gruzelier J. H. (2014). EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 44 124–141. 10.1016/j.neubiorev.2013.09.015 24125857
Han C. H. Lim J. H. Lee J. H. Kim K. Im C. H. (2016). Data-driven user feedback: an improved neurofeedback strategy considering the interindividual variability of EEG features. BioMed Res. Int. 2016:3939815. 10.1155/2016/3939815 27631005
Hanslmayr S. Sauseng P. Doppelmayr M. Schabus M. Klimesch W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl. Psychophysiol. Biofeedback 30 1–10. 10.1007/s10484-005-2169-8 15889581
Holgado D. Sanabria D. (2021). Does self-paced exercise depend on executive processing? A narrative review of the current evidence. Int. Rev. Sport Exerc. Psychol. 14 130–153. 10.1080/1750984X.2020.1774915
Hothorn T. Bretz F. Westfall P. (2008). Simultaneous inference in general parametric models. Biom. J. 50 346–363. 10.1002/bimj.200810425 18481363
Hsueh J. J. Chen T. S. Chen J. J. Shaw F. Z. (2016). Neurofeedback training of EEG alpha rhythm enhances episodic and working memory: alpha neurofeedback on memory. Hum. Brain Mapp. 37 2662–2675. 10.1002/hbm.23201 27038114
Hyvärinen A. Oja E. (2000). Independent component analysis: algorithms and applications. Neural Netw. 13 411–430. 10.1016/S0893-6080(00)00026-5
Klimesch W. Schimke H. Pfurtscheller G. (1993). Alpha frequency, cognitive load and memory performance. Brain Topogr. 5 241–251. 10.1007/BF01128991 8507550
Kober S. E. Witte M. Ninaus M. Neuper C. Wood G. (2013). Learning to modulate one’s own brain activity: the effect of spontaneous mental strategies. Front. Hum. Neurosci. 7:695. 10.3389/fnhum.2013.00695 24151462
McCulloch C. E. Searle S. R. (2001). Generalized, Linear, and Mixed Models. New York, NY: Wiley.
Naas A. Rodrigues J. Knirsch J. P. Sonderegger A. (2019). Neurofeedback training with a low-priced EEG device leads to faster alpha enhancement but shows no effect on cognitive performance: a single-blind, sham-feedback study. PLoS One 14:e0211668. 10.1371/journal.pone.0211668 31483789
Nan W. Rodrigues J. P. Ma J. Qu X. Wan F. Mak P. I. et al. (2012). Individual alpha neurofeedback training effect on short term memory. Int. J. Psychophysiol. 86 83–87. 10.1016/j.ijpsycho.2012.07.182 22864258
Navarro Gil M. Escolano Marco C. Montero-Marín J. Minguez Zafra J. Shonin E. García Campayo J. (2018). Efficacy of neurofeedback on the increase of mindfulness-related capacities in healthy individuals: a controlled Trial. Mindfulness 9 303–311. 10.1007/s12671-017-0775-1
Pinheiro J. Bates D. DebRoy S. Sarkar D. R Core Team (2022). nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-155. Available online at: https://CRAN.R-project.org/package=nlme (accessed July 22, 2022).
R Core Team (2022). R: A Language and Environment for Statistical Computing. Vienna: R Core Team.
Ros T. Baars B. J. Lanius R. A. Vuilleumier P. (2014). Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front. Hum. Neurosci. 8:1008. 10.3389/fnhum.2014.01008 25566028
Savitzky A. Golay M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36 1627–1639. 10.1021/ac60214a047
Scheinost D. Stoica T. Wasylink S. Gruner P. Saksa J. Pittenger C. et al. (2014). Resting state functional connectivity predicts neurofeedback response. Front. Behav. Neurosci. 8:338. 10.3389/fnbeh.2014.00338 25309375
Sorger B. Scharnowski F. Linden D. E. J. Hampson M. Young K. D. (2019). Control freaks: towards optimal selection of control conditions for fMRI neurofeedback studies. NeuroImage 186 256–265. 10.1016/j.neuroimage.2018.11.004 30423429
Thibault R. T. Lifshitz M. Raz A. (2016). The self-regulating brain and neurofeedback: experimental science and clinical promise. Cortex 74 247–261. 10.1016/j.cortex.2015.10.024 26706052
Wan F. Nan W. Vai M. I. Rosa A. (2014). Resting alpha activity predicts learning ability in alpha neurofeedback. Front. Hum. Neurosci. 8:500. 10.3389/fnhum.2014.00500 25071528
Witte M. Kober S. E. Ninaus M. Neuper C. Wood G. (2013). Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Front. Hum. Neurosci. 7:478. 10.3389/fnhum.2013.00478 23966933
Zhao Z. Yao S. Zweerings J. Zhou X. Zhou F. Kendrick K. M. et al. (2021). Putamen volume predicts real-time FMRI neurofeedback learning success across paradigms and neurofeedback target regions. Hum. Brain Mapp. 42 1879–1887. 10.1002/hbm.25336 33400306