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The more, the better? Learning rate
and self-pacing in neurofeedback
enhance cognitive performance in
healthy adults
Sinan Uslu* and Claus Vögele

Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette,
Luxembourg

Real time electroencephalogram (EEG) based neurofeedback has been shown to

be effective in regulating brain activity, thereby modifying cognitive performance

and behavior. Nevertheless, individual variations in neurofeedback learning rates

limit the overall efficacy of EEG based neurofeedback. In the present study we

investigated the effects of learning rate and control over training realized by self-

pacing on cognitive performance and electrocortical activity. Using a double-blind

design, we randomly allocated 60 participants to either individual upper alpha (IUA)

or sham neurofeedback and subsequently to self- or externally paced training.

Participants receiving IUA neurofeedback improved their IUA activity more than

participants receiving sham neurofeedback. Furthermore, the learning rate predicted

enhancements in resting-state activity and mental rotation ability. The direction of

this linear relationship depended on the neurofeedback condition being positive

for IUA and negative for sham neurofeedback. Finally, self-paced training increased

higher-level cognitive skills more than externally paced training. These results

underpin the important role of learning rate in enhancing both resting-state activity

and cognitive performance. Our design allowed us to differentiate the effect of

learning rate between neurofeedback conditions, and to demonstrate the positive

effect of self-paced training on cognitive performance in IUA neurofeedback.

KEYWORDS

neurofeedback, individual upper alpha, learning rate, self-paced training,
electroencephalography (EEG), cognitive performance

1. Introduction

Neurofeedback is a neurocognitive intervention which enables users to regulate their
brain activity via a three-step iterative loop: (1) measuring brain activity, (2) processing it
and (3) feeding it back to the user. The learning of this regulation relies on the principles
of operant conditioning by providing rewarding feedback whenever the user successfully
regulated the brain activity and, furthermore, it is conceptualized in the context of control-
theoretical models involving neurophysiological processes and the dual-process theory including
automated processes (for a review see Enriquez-Geppert et al., 2017). This reinforcement
and increase in successful regulation are finally intended to change cognitive and behavioral
outcomes, which are related to the targeted brain activity (Enriquez-Geppert et al., 2017).
In electroencephalography (EEG) based neurofeedback, training protocols typically target the
regulation of frequency bands by decomposing the EEG signal during neurofeedback training.
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Many studies have demonstrated the efficacy of neurofeedback to
regulate brain activity and, thereby, to modify cognitive performance
and behavior in both clinical (Garcia Pimenta et al., 2021) and
healthy samples (Nan et al., 2012; Escolano et al., 2014; Gruzelier,
2014; Navarro Gil et al., 2018). In clinical populations, neurofeedback
has been shown to enable patients to regulate their brain activity
and thereby to influence their symptoms. For example, in attention
deficit hyperactivity disorder (ADHD) the treatment efficacy of
neurofeedback was comparable to those of other intervention types
and further improved when personalized by selecting the brain
activity feature to modulate based on EEG characteristics measured
prior to neurofeedback (for a review see Garcia Pimenta et al., 2021).
In their review the authors further discussed heightened reward
sensitivity in children diagnosed with ADHD as a non-specific factor
contributing to the training effect on clinical outcomes (Garcia
Pimenta et al., 2021). While neurofeedback applications in clinical
populations have focused on restoring cognitive and behavioral
functionality, studies with non-clinical samples have concentrated on
enhancing cognitive performance. Across varying training protocols,
many studies could show cognitive improvements after regulating
the alpha frequency range from the EEG spectrum (Gruzelier, 2014).
For example, participants performing a single session of individual
upper alpha (IUA) neurofeedback over occipitoparietal regions
improved their IUA activity during training more than participants
receiving sham neurofeedback (Escolano et al., 2014). Furthermore,
participants receiving IUA neurofeedback also increased their higher-
level cognitive skills measured with part B of the trail making
task (TMT) more than participants receiving sham feedback,
however, without differences in resting-state activity between the
two groups. Even when participants underwent multiple sessions
of IUA neurofeedback they did not show an increased IUA activity
during a resting-state period compared to a waiting-list control
group (Navarro Gil et al., 2018). In addition to enhancing cognitive
performance, IUA neurofeedback also led to better short-term
memory performance when compared to a non-neurofeedback
waiting-list control group (Nan et al., 2012). The evidence from
these studies also suggests that the increase in performance positively
correlates with an increase in IUA activity (Nan et al., 2012;
Navarro Gil et al., 2018).

Notably, the efficacy of neurofeedback varies across participants
with some of them not increasing the targeted brain activity at
all (Alkoby et al., 2018). While some researchers separate their
analyses for participants who were successful in regulating their
brain activity, hereafter referred to as “responders,” and for those
who were not, hereafter referred to as “non-responders” (Hsueh
et al., 2016; Autenrieth et al., 2020; Eschmann et al., 2022), other
researchers have investigated the association between learning rate
and outcome measures in a continuous manner (Nan et al., 2012;
Navarro Gil et al., 2018; Naas et al., 2019). To explain these variations
between participants, previous studies have assessed psychological
(Thibault et al., 2016) and neurophysiological factors (Scheinost et al.,
2014; Zhao et al., 2021) as predictors of improvements in behavioral
and neurophysiological outcomes. In terms of neurophysiological
factors, previous studies have used both measures of connectivity
(Scheinost et al., 2014) and gray matter volume in resting-state fMRI
as indicators of learning success (Zhao et al., 2021). For EEG based
neurofeedback, researchers have demonstrated in a study in which
all participants performed individual alpha band neurofeedback that
resting-state relative alpha band power was positively correlated
with the learning rate during training (Wan et al., 2014). Regarding

psychological factors, researchers have investigated mental strategies
participants used to regulate their brain activity (Kober et al., 2013),
and the control beliefs participants had while dealing with technology
(Witte et al., 2013). Participants reported different strategies after
neurofeedback also depending on the targeted frequency band
(Kober et al., 2013). For example, after sensory motor rhythm (SMR)
based neurofeedback participants who reported not to have used a
specific strategy enhanced their SMR activity more than participants
reporting a strategy. Hence, up-regulation of SMR activity might
depend on implicit associative learning mechanisms (Gruzelier,
2014). Some researchers have thus hypothesized that conscious
efforts during neurofeedback interfere with non-conscious learning
processes and may in turn decrease the learning rate (Witte et al.,
2013). To summarize, both psychological and neurophysiological
factors contributed to the overall efficacy of neurofeedback training
and the findings suggest that those factors interact with the
targeted feature of brain activity and, furthermore, depend on user
characteristics.

In alpha neurofeedback the conscious pursuit of mental strategies
positively influenced IUA band activity (Nan et al., 2012; Naas
et al., 2019) and the individual adjustment of feedback levels yielded
a wider range of feedback realized during training (Han et al.,
2016). Participants were asked to pursue any mental strategy for
a neurofeedback trial, but to stick to it during the trial (Nan
et al., 2012). They were allowed to change strategies between
trials. Reports gathered after neurofeedback indicated that positive
strategies (e.g., thinking about friends) yielded increased activity in
the IUA band compared to neutral (e.g., thinking about numbers)
or negative strategies (e.g., thinking about accidents) (Nan et al.,
2012). To control for non-specific factors, another study extended
this methodology to a sham-controlled experiment (Naas et al., 2019).
Interestingly, the learning rate was comparable between the groups
indicating that appropriate mental strategies may be sufficient to
enhance IUA activity. Nevertheless, hitherto no study has investigated
the efficacy of mental strategies on IUA neurofeedback performance
in a randomized controlled trial. Another approach to increase the
efficacy of neurofeedback is focused on individually tailoring the
training paradigm. For instance, the peak alpha frequency as a
neurophysiological correlate of cognitive processes (Klimesch et al.,
1993) enabled the individual adjustment of the targeted frequency
range in neurofeedback training paradigms (Gruzelier, 2014). The
mental rotation performance increased after stimulating participants
with a transmagnetic stimulation frequency based on the individual
alpha peak (Klimesch et al., 1993). In alpha neurofeedback studies,
both the mental rotation task and TMT performance increased after
the session (Hanslmayr et al., 2005; Escolano et al., 2014). Other
parameters than the neurophysiological activity at resting-state which
allow for individual adaptation include feedback thresholds (Han
et al., 2016) and pacing of the training. Self-paced training would
grant users more control over the distribution of their training time
and allow them to explore mental strategies on their own pace.

The main goal of the current study was to extend previous
research by estimating the effect of learning rate on resting-state
IUA activity and cognitive performance after a single session of IUA
neurofeedback and to investigate the efficacy of control over training
to enhance cognitive performance. To give participants control over
the neurofeedback training, we allowed some of them to freely
distribute their training and rest time during the session, whereas
others received neurofeedback in an externally paced manner.
Importantly, only the distribution of the rest time varied between
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FIGURE 1

Summary of the hypotheses. The asterisk operator denotes factor
crossing.

conditions keeping the rest, training and overall time constant across
all participants. To control for non-specific factors, we included a
sham-control condition with the pre-recorded feedback from another
participant not further involved in this study. We assessed the mental
rotation ability, visual search skills, and higher-level cognitive skills
task before and after neurofeedback. To estimate the efficacy of
neurofeedback we conducted a series of mixed models analyses taking
variations between participants into account.

Based on previous findings, we expected to observe (1) an
effect of neurofeedback on relative IUA activity (see section “2.8.
Statistical analyses” for more technical details), (2) a transfer effect
of neurofeedback and pacing on cognitive outcomes (i.e., a negative
effect on changes in error rate and response time), and (3) an
association between learning rate during neurofeedback and changes
in cognitive outcomes (see Figure 1). We first of all expected to
observe a greater increase in IUA activity for participants in the
IUA neurofeedback group compared to participants receiving sham
neurofeedback after a single neurofeedback session. Additionally,
we hypothesized that (2a) all participants increase their cognitive
performance from pre to post-neurofeedback due to practice, (2b)
participants receiving IUA neurofeedback increase their cognitive
performance more than participants receiving sham neurofeedback,
(2c) that participants who pace neurofeedback training on their
own enhance their cognitive performance more than participants
training in an externally paced manner, and (2d) that this pacing
effect is more dominant in the real neurofeedback group compared
to the sham neurofeedback group. Finally, we expected to observe
an effect of neurofeedback learning rates on (3a) cognitive outcomes
and (3b) resting-state activity specifically for participants in the real
neurofeedback group.

2. Materials and methods

This study followed a sham-controlled, randomized, double-
blind design to investigate these factors in enhancing both resting-
state relative IUA activity and cognitive performance. As we expected
larger differences between IUA and sham neurofeedback than
between the two pacing conditions within IUA neurofeedback, we
required a larger sample size in both IUA neurofeedback pacing

FIGURE 2

Trial from the mental rotation task. (A) The figure presented right to
the fixation cross is the same as the figure on the left (correct
response is “Y”). (B) The figure presented right to the fixation cross is
not the same as the figure on the left as it is mirrored (correct
response is “N”).

conditions to detect smaller effects. Therefore, we randomly allocated
participants on a 2:1 basis to either IUA or sham neurofeedback and
subsequently on a 1:1 ratio to either self- or externally paced training
using the Fisher-Yates algorithm.

2.1. Participants

The sample consisted of N = 60 healthy young adults (42 females,
mean age: 24.65 years, age range: 18–35 years) who underwent the
same procedure except for type of neurofeedback and the type of
pacing. All participants had normal or corrected-to-normal vision.

2.2. Mental rotation task

The computerized mental rotation task contained 96 trials and
was administered pre- and post-neurofeedback training. Each trial
displayed one object pair: a baseline object on the left half of the
screen and a target object on the right half of the screen (see Figure 2).
The target object was the same as the baseline object (but rotated) for
half of the trials and horizontally flipped for the remaining trials. For
each participant, time point (pre, post) and rotation angle (0, 50, 100,
150◦) we randomly sampled the 3D object pairs without replacement
from a stimulus pool (Ganis and Kievit, 2015). Object pairs used for
practice trials were excluded from the stimulus pool.

All experimental trials started with a fixation cross. An object pair
appeared subsequently until participants responded. If participants
did not respond within 7500 ms, the next trial continued. The
duration of the fixation cross varied randomly between 1000 and
3000 ms to minimize expectancy effects. Participants were instructed
to respond as quickly and as accurately as possible by using the
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“Y” (same, but rotated objects) and the “N” key (horizontally
flipped objects).

2.3. Trail making test

The TMT consists of two parts: (A) 25 encircled numbers from
“1” to “25” and (B) a total of 25 encircled numbers, from “1” to
“13,” and letters, from “A” to “L” (Bowie and Harvey, 2006). We
administered a paper pencil version and instructed participants to
connect the series of circles in ascending order without lifting the
pencil from the paper as fast as they can. For part B participants had
to alternate between numbers and letters (i.e., 1-A-2-B etc.). Each part
started with a practice trial with a total of eight circles to ensure that
participants understood and adhered to the instructions. While the
completion time for part A measured visual search and motor speed
skills, the completion time for part B assessed higher-level cognitive
skills including mental flexibility.

2.4. EEG recording

The EEG signals were amplified by a BrainAmp system (Brain
Products, Gilching, Germany). Its output was digitized with a
resolution of 16 bit and sampled at a rate of 1000 Hz via the lab
streaming layer protocol. For data acquisition, we mounted a set of
32 Ag/AgCl electrodes according to the 10/20-system and referenced
it to FCz. To capture horizontal eye movements, we placed two
additional electrodes on the external canthi of both eyes. We kept the
impedances below 20 k� with the ground and the reference electrode
below 5 k� throughout the recording.

2.5. Neurofeedback

We implemented a neurofeedback software to acquire, process
and visualize electrophysiological signals in Python, which will be
made available upon reasonable request. Configuration recordings
prior to neurofeedback training provided gradient and amplitude
artifact detection thresholds calibrated for each participant. A 5-
min eyes open resting-state recording prior to the neurofeedback
training determined the IUA frequency range (individual alpha peak
frequency + 2 Hz) and its related power. We did not disclose
successful mental strategies to increase IUA activity to participants
before neurofeedback. Some researchers have argued that this reduces
the risk of participants enhancing their IUA activity when receiving
sham feedback (Naas et al., 2019). Others have pointed out that
only the use of mental strategies might increase the targeted brain
activity and thus this mental rehearsal should be controlled (Sorger
et al., 2019). Nevertheless, the implicitness of some mental strategies
complicates the applicability of such a control condition and an
explicit instruction might even interfere with the targeted brain
activity (Kober et al., 2013). For IUA neurofeedback, we did not
find studies experimentally varying the content of mental rehearsal
strategies to investigate their efficacy in a randomized controlled trial.
For fMRI neurofeedback, studies applying a mental rehearsal control
condition typically instructed participants to choose a strategy and to
stick to it throughout the session (for a review see Sorger et al., 2019).

During neurofeedback training the IUA band power was averaged
across P3, Pz, P4, O1, and O2 (Escolano et al., 2014). The difference

of current and resting-state IUA power standardized by the resting-
state IUA power standard deviation determined the height of a bar
plot. For participants receiving sham feedback we used the same
pre-recorded EEG activity. To ensure that the technician carrying
out the recording was blinded, he was separated by a mounted wall
from the participant and, hence, could not monitor the feedback
the participant received. Additionally, the technician only viewed
the actual recording presented on the monitor (and not the sham
recording). We instructed participants to keep the bar above a line
which corresponded to their resting-state IUA power. Whenever the
signal exceeded the individually adjusted artifact detection threshold,
the word “NOISE” appeared at the center of the screen and the
feedback was halted until the signal decreased below the threshold.
For online processing, we applied a sliding Fast Fourier Transform
performed on a 1 s Hanning window with an overlap of 75% resulting
in an update rate of 4 Hz. To increase the frequency resolution to
0.5 Hz, we zero-padded the time windows. To facilitate alpha peak
identification and to smooth the spectral data, we additionally applied
a Savitzky–Golay filter with window size 11 and polynomial order
2 (Savitzky and Golay, 1964). Participants in the sham condition
received the feedback from another participant not involved in the
study.

2.6. Procedure

Participants took part in individual laboratory sessions at the
University of Luxembourg. They received course credits or 20€
in vouchers as reimbursement for the 2 h lasting procedure
(see Figure 3). After giving their informed, written consent, all
participants completed a questionnaire capturing socio-demographic
data. We then administered the TMT (pre-neurofeedback) including
practice trials and recorded the completion time. Next, we started the
EEG recording and continued with the mental rotation task.

To prepare the neurofeedback training, we first calibrated the
artifact detection thresholds. Therefore, we recorded three epochs
of 10 s each prior to which we instructed participants (1) not to
blink, (2) to blink, and (3) to activate other facial muscles. Next, we
recorded the baseline IUA activity in resting-state. The single session
neurofeedback training procedure had a total duration of 34 min
(30 min training + 4 min rest). For sham feedback we provided
the same pre-recorded feedback to Participants in the self-paced
condition distributed the resting minutes themselves whereas for
participants in the externally paced condition five training blocks
were interspersed with 1 min resting epochs. When self-pacing the
training, resting phases immediately followed upon pressing the
spacebar. To continue with the training, we instructed participants
in the self-paced condition to press the spacebar again. The bar
plot reappeared after a delay of 3 s to reduce the impact of muscle
activity on the feedback signal. After the training we administered
the post-neurofeedback TMT and mental rotation task without
any practice trials. Finally, we debriefed all participants about the
allocation of some participants to a control condition receiving sham
neurofeedback and about our hypotheses.

2.7. EEG pre-processing

We used the MNE library version 0.23.0 (Gramfort et al., 2013)
in Python version 3.7.3 (Python Software Foundation, DE, USA) to
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FIGURE 3

Study procedure: Trial making task (TMT) and mental rotation task were administered pre- and post-neurofeedback.

process all EEG data. For each participant we imported the EEG
data into the MNE framework and added all required information
(e.g., sampling rate, definition of stimulus channels). We analyzed
the data separately for resting states and neurofeedback training. In
both cases, we first re-referenced the signal to the average for further
analysis. For outlier and artifact detection, we then segmented the
continuous EEG data into consecutive, non-overlapping epochs with
a duration of 10 s each. Next, we identified and treated outliers either
by channel interpolation or by epoch removal. For detection, we
estimated for each channel and each epoch the strength of high-
frequency components by first calculating the power between 70
and 130 Hz, normalizing it by total power and finally applying
a log-transformation for a conversion into decibel. We defined a
median absolute deviation threshold of 3 to detect outliers. After
raw data inspection, we bandpass filtered the remaining EEG signal
between 0.2 and 100 Hz with a finite item response filter (FIR)
to improve the following independent component analysis (ICA)
performance. In detail, we applied a one-pass, non-causal, zero
phase, Hamming-windowed FIR filter (lower half-amplitude cut-
off = 0.1 Hz, upper half-amplitude cut-off = 112.5 Hz, passband
ripple = 0.0194 dB, stopband attenuation = 53 dB). To attenuate
line noise, we additionally notch filtered the signal at 50 Hz. We
then performed an ICA decomposition with the FastICA algorithm
(Hyvärinen and Oja, 2000) to detect and remove components
representing eye- and muscle-artifacts. For artifact detection we
relied on the visual inspection of each component’s time signal, its
power spectral density distribution and its topographical activity.
After the artifact cleaning procedure, we applied the ICA solution
back on the EEG data and estimated the power spectral density
for each epoch. Only for the resting state phases before and after
neurofeedback, we averaged the estimates across all epochs.

2.8. Statistical analyses

We carried out all statistical analyses in R version 4.1.3 (R
Core Team, 2022). To estimate mixed models, we mostly used
the lme4 package version 1.1.28 (Bates et al., 2015) but also

used the nlme package version 3.1.155 (Pinheiro et al., 2022) to
additionally include autoregressive residuals. For hypothesis testing
we performed both model comparisons based on the likelihood ratio
test and multiple contrast tests. By default, we determined restricted
maximum likelihood estimates of model parameters which produce
unbiased parameter estimates and are preferred for unbalanced data
(McCulloch and Searle, 2001). Exclusively for model comparisons,
we estimated model parameters using maximum likelihood. Since
we tested some of our hypotheses with multiple contrast tests, we
calculated simultaneous confidence intervals at a 95% significance
level with the multcomp package version 1.4.19 which control the
family wise error rate (Hothorn et al., 2008).

We fitted a series of mixed models to estimate the fixed effect
of time (contrast: post = 0.5, pre = −0.5; continuous for within
neurofeedback changes), neurofeedback (IUA = 0.5, sham = −0.5),
pacing (self = 0.5, external = −0.5) and their interactions on outcome
measures. Depending on the nature of the data we either applied
linear mixed models (LMMs) or generalized linear mixed models
(GLMMs). For both, we first fitted null models only including
random effects to estimate the variance explained by level 1 predictors
such as participant or angular disparity (exclusively for the mental
rotation task). To calculate point-estimates, we then fitted a full
model including all fixed effects; and to estimate the contribution
of each fixed effect to the overall model fit, we compared a model
including the fixed effect of interest to a corresponding reference
model without that effect. Finally, we tested our a priori contrasts
in the full model including all fixed effects by estimating 95%
simultaneous confidence intervals for the specified hypotheses. This
procedure corrected the inflated family wise error rate associated
with multiple testing. To test our first hypotheses, we evaluated pre
vs. post-resting-state and within neurofeedback changes of relative
IUA power. For both pre and post-neurofeedback, we calculated the
relative IUA power by dividing IUA power by the total power of
frequencies up to 49 Hz. Hereby we excluded potential biases due to
notch filtering at 50 Hz. For within neurofeedback, we calculated the
relative IUA power in the same manner but additionally expressed
the change over the 10 s epochs in percentage change from resting-
state relative IUA power measured before neurofeedback. To test
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TABLE 1 Central tendency and variability of the mental rotation task
performance measured as reaction time (RT) in log (ms) for trials with
correct response and error rate in ratio of incorrect of trials
with any response.

Group RT Error rate

Pre-mean
(SE)

Post-mean
(SE)

Pre-mean
(SE)

Post-mean
(SE)

Real, self-paced
NF (n = 19)

7.90 (0.06) 7.71 (0.06) 16.19 (2.18) 12.14 (2.01)

Real, ext.-paced
NF (n = 20)

7.89 (0.04) 7.67 (0.04) 13.79 (1.45) 10.34 (1.30)

Sham,
self-paced NF
(n = 10)

7.98 (0.07) 7.80 (0.06) 12.58 (2.26) 9.51 (1.57)

Sham,
ext.-paced NF
(n = 10)

8.00 (0.09) 7.79 (0.09) 16.67 (3.79) 11.39 (3.41)

First, we aggregated the mean of the measures per participant and time point. Then, we
aggregated the mean and standard error (SE) of those aggregates. Participants were either
allocated to real or sham neurofeedback (NF) and subsequently to either self- or externally paced
(ext.-paced) NF. We excluded one participant from the analyses whose overall error rate was
above 80%.

our second hypotheses, we considered errors and reaction time
(only in trials with correct response) for the mental rotation task
and completion time for the TMT. For the number of errors,
we fitted a GLMM to predict correct and incorrect responses by
using a binomial distribution with the logit link function. For both
reaction time in the mental rotation task and completion time in
the TMT we applied LMMs. Only for the mental rotation task, we
additionally included angular disparity as a crossed random effect in
the random effects structure to estimate its contribution compared
to participants’ characteristics. To test our third hypothesis, we fitted
linear models predicting participant level averaged change scores
with neurofeedback, pace, learning rate and their interactions. We
estimated the learning rate for each participant as the slope in
a linear model predicting the change in relative IUA power over
neurofeedback training epochs.

3. Results

We grouped the results section by the administered tasks and
begin with the results on the effect of neurofeedback on IUA in
resting state activity and IUA activity during neurofeedback training
(hypotheses 1 and 3b). Next, we focus on the behavioral outcomes
and report the results for the mental rotation task and the TMT. For
each task we report both the crossed effects of neurofeedback and
pacing and the crossed effects of neurofeedback and learning rate on
performance (hypotheses 2 and 3a). For the descriptive statistics of
the mental rotation task and the TMT please refer to Tables 1, 2.

3.1. Neurofeedback

First, we estimated the interaction effect of time and
neurofeedback condition on resting-state relative IUA power in
a linear mixed model. To estimate the effect of learning rate, we then
calculated the relative IUA power change score for each participant
and included the learning rate in a linear model. For the analysis of

TABLE 2 Central tendency and variability of the trail making task (TMT)
performance measured as completion time in s.

Group Version A Version B

Pre-mean
(SE)

Post-mean
(SE)

Pre-mean
(SE)

Post-mean
(SE)

Real, self-paced
NF (n = 20)

3.20 (0.07) 2.91 (0.07) 3.99 (0.07) 3.74 (0.09)

Real, ext.-paced
NF (n = 19)

3.07 (0.07) 2.82 (0.05) 3.88 (0.07) 3.77 (0.09)

Sham,
self-paced NF
(n = 10)

3.14 (0.12) 2.92 (0.08) 3.89 (0.06) 3.62 (0.09)

Sham,
ext.-paced NF
(n = 10)

3.16 (0.09) 3.01 (0.09) 3.93 (0.06) 3.87 (0.09)

We aggregated the mean (and standard error) of completion times per TMT version (A,B) group
and time point. Participants were either allocated to real or sham neurofeedback (NF) and
subsequently to either self- or externally paced (ext.-paced) NF. We excluded one participant
from the analyses due to non-compliance with the instructions.

the learning rate during neurofeedback training, we finally estimated
percentage changes from pre-neurofeedback resting-state relative
IUA power over 10 s epochs in a series of linear mixed models.

3.1.1. Resting-state activity
The null model only including a random intercept for

participants revealed that participants’ characteristics explained most
of the variance (ρ = 0.81) in the relative IUA power measured
before and after neurofeedback. A full model including fixed
effects for neurofeedback, pacing, time, and their interactions failed
to outperform the null model [X2(7) = 12.04, p = 0.1]. This
suggests that the incorporated fixed factors did not have sufficient
explanatory power and we found no support for changes between
pre and post-neurofeedback regarding the relative IUA activity.
To estimate the link between learning rate and alterations in
resting-state activity, we predicted the difference in relative IUA
activity measured during resting-state (post–pre) in a linear model
including neurofeedback, pacing, learning rate and their interactions
as independent variables. As expected, we observed a positive
interaction effect for neurofeedback and learning rate [b = 0.18,
t(52) = 2.10, p < 0.05] indicating that the link between learning rate
and resting-state relative IUA activity was stronger for participants
receiving IUA neurofeedback. A follow-up trend analysis revealed
that the more participants increased their IUA activity during
neurofeedback, the more they increased their relative IUA activity
from pre to post-neurofeedback in the resting-state [b = 0.09,
t(52) = 2.69, p < 0.01]. These results indicate that the learning rate
plays a crucial role in alternating resting-state activity.

3.1.2. Training activity
To investigate changes during neurofeedback, we estimated

parameters of a multilevel growth model including time as a
continuous predictor. The time variable represented the ith epoch
where each epoch contained 10 s of EEG data during the training
phases (the relative IUA power of which we predicted in our
models). During pre-processing of the EEG data, we excluded 144
epochs due to artifacts resulting in a total of 10656 remaining
epochs. We defined three models (1) a null model with a random
intercept for participants, (2) an intermediate model additionally
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TABLE 3 Generalized linear mixed model (GLMM) for percentage changes in relative IUA power over neurofeedback training epochs.

Fixed effects

B (SE) Likelihood ratio test 95% SCI-LB

X2(1) p

Intercept 84.191 (3.867) – – –

Neurofeedback −2.497 (7.734) 0.186 0.67 –

Pacing −0.367 (7.734) 0.171 0.68 –

Time 0.093 (0.011) 100.441 <0.001 0.070

Neurofeedback × pacing −18.117 (15.467) 1.292 0.26 –

Neurofeedback × time 0.064 (0.022) 8.557 <0.01 0.017

Pacing × time 0.003 (0.022) 0.059 0.81 –

Neurofeedback × pacing × time 0.011 (0.043) 0.068 0.79 −0.081

Random effects

σ2 phi

Participant (intercept) 728.195 –

Residual 1921.776 –

Time × participant – 0.226

The unstandardized estimates (B) and their standard error (SE) listed for each fixed effect, variance (σ2) and auto-correlation (phi) for random effects incorporated in the full model. For completeness,
likelihood ratio test result is reported for each fixed effect by comparing a model including the effect to a corresponding reduced model. For final multiple contrast tests, we relied on the lower bound
of one sided 95% simultaneous confidence intervals (95% SCI-LB).

including fixed effects for neurofeedback, pacing, time, and their
interaction, and (3) a full model with an additional first order
autoregressive, AR(1), within-participant residual. The null model
revealed a sufficient intraclass correlation (ρ = 0.28) indicating the
adequateness of applying a multilevel model. Our intermediate model
outperformed the null model [X2(7) = 181.31, p < 0.001] but out
of the three competing models the final model fitted the data best
[X2(1) = 548.33, p < 0.001]. As expected, model comparisons to
estimate the contribution of each fixed effect revealed a positive
main effect for time and a positive interaction effect for time and
neurofeedback (see Table 3). After correction for multiple tests
by estimating one-sided lower bounds of simultaneous confidence
intervals with a 95% family wise confidence level both the main
and the interaction effect remained significant. This suggests that
although all participants increased their relative IUA power over time,
participants in the real neurofeedback group improved their relative
IUA power more than participants in the sham neurofeedback group.

A follow-up trend analysis showed that the slope for participants
receiving IUA neurofeedback [b = 0.13, t(10592) = 9.98, p < 0.001]
was twice as high as the slope for participants receiving sham
neurofeedback [b = 0.06, t(10592) = 3.44, p < 0.001]. While
participants in the IUA neurofeedback condition increased their
relative IUA power by 22.48% over the 180 10 s epochs during
training, participants in the sham neurofeedback condition increased
their relative IUA power only by 11.02%.

3.2. Mental rotation task

We fitted a series of models to estimate the effects of
neurofeedback and pacing on changes in mental rotation task
performance (i.e., reaction time and errors). From the 11520 trials
(192 per participant) we excluded trials from one participant whose
overall accuracy during the mental rotation task was below 20%

and all trails without a response yielding the remaining 11169 trials.
Only for reaction time analysis we additionally excluded trials with
incorrect responses after which 9732 trials remained. The central
tendency and variability of the outcome measures aggregated over
participants and across time (i.e., pre and post) were comparable
to results from the validation study (Ganis and Kievit, 2015). As
expected, error rates and reaction times increased with angular
disparity (see Table 4). To test our hypotheses, we first fitted null
models with crossed random intercepts for participant and angular
disparity to predict the respective outcome measure. Then, we
estimated linear mixed models including the crossed random effects
from the null model and the fixed effects for neurofeedback, pacing,
time, and their interactions. Finally, we estimated a linear model
including individual learning rates during neurofeedback to predict
change scores (post–pre) in outcome measures.

3.2.1. Response errors
The estimation of the null model revealed a similar intraclass

correlation for participants’ characteristics (ρ = 0.10) as for the
angular disparity of the stimulus itself (ρ = 0.08). Comparisons with
the likelihood ratio test estimating the explanatory contribution of
each fixed effect revealed a negative main effect for time (see Table 5).
Hence, the error rate decreased from pre to post-neurofeedback
training independent of the neurofeedback condition participants
were assigned to. To test our a priori contrasts, we then estimated
one-sided 95% simultaneous confidence intervals. The main effect
for time remained significant after correcting the inflated family wise
error rate. There was no other main effect indicating that the overall
error rate was similar across different conditions. Furthermore,
the difference in the change of error rate (post vs. pre) between
neurofeedback conditions (IUA vs. sham) was negligible. Similarly,
we found no three-way interaction effect of time, pacing and
neurofeedback.
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TABLE 4 Central tendency and variability of mental rotation task
performance per angle measured as reaction time (RT) in ms for trials with
correct response and error rate in percentage incorrect of
trials with response.

Angle RT Error rate

Mean (SE) Mean (SE)

0◦ 2072.03 (72.07) 6.25 (0.99)

50◦ 2693.48 (87.24) 9.29 (0.92)

100◦ 3306.65 (94.15) 15.20 (1.32)

150◦ 3456.22 (95.94) 20.97 (1.46)

We aggregated both measures over participants and across time points (i.e., pre- and post-
neurofeedback).

To account for individual learning rates during neurofeedback,
we additionally estimated a linear model predicting the change
scores of error rate with neurofeedback, pacing, learning rate
and their interactions as independent variables. Therefore, we
aggregated the difference in number of incorrect responses (post–
pre) for each participant over all trials. The model showed a
positive interaction effect for neurofeedback and learning rate
indicating that the linear relationship between error rate and
learning rate was more negative for participants receiving IUA
neurofeedback than for participants receiving sham neurofeedback
[b = −17.97, t(51) = −1.73, p < 0.05]. To investigate whether
the linear relationship between the error rate and the learning
rate was significantly less than zero for participants in the real
neurofeedback group, we performed a follow-up trend analysis.
This revealed that the more participants in the IUA neurofeedback
condition increased their relative IUA power during neurofeedback
the less errors they made in the mental rotation task [b = −7.36,
t(51) = 1.85, p < 0.05]. To conclude, the effect of learning rate on
reductions in errors differed between the neurofeedback groups with
a stronger negative linear relationship for the real than for the sham
neurofeedback group.

3.2.2. Reaction time
To reduce the skewness of the distribution, we first log-

transformed reaction times. The null model revealed that the
variance between participants was greater than the variance
between angles. Hence, the logarithmic reaction times depended
more on participant’s characteristics than on angular disparity.
Like the full model predicting errors, we only found a main
effect for time suggesting that all participants reduced their
reaction time from pre to post-neurofeedback (see Table 6).
However, the groups did not differ in their reduction of reaction
time.

When incorporating learning rates into a linear model to predict
change scores of logarithmic reaction time (post–pre) we found
a negative interaction effect between neurofeedback and learning
rate [b = −1373.45, t(51) = −1.94, p < 0.05]. This suggests
that the linear relation between learning rate and changes in
reaction time was more negative for IUA neurofeedback. A follow-
up trend analysis did not show that the linear relationship was
significantly lower than zero for the real neurofeedback group
[b = −71.35, t(51) = −0.26, p = 0.40]. In conclusion, the difference
in the linear link between learning rate and reaction time was
more driven by participants in the sham neurofeedback group
who responded slower with increasing learning rate than by

participants in the real neurofeedback group who responded faster
with increasing learning rate.

3.3. Trail making test

To estimate the effects of neurofeedback and pacing on TMT
completion time, we fitted a series of models analogously to
the analyses of mental rotation task performance. We excluded
one participant from our analyses due to non-compliance and
ran the models separately for part A and B of the TMT.
To reduce the skewness of the completion time distribution,
we log-transformed the outcome measure before we fitted the
models. First, we fitted a null model with a random intercept
for participants. Next, we estimated the full linear mixed models
including the fixed effects for neurofeedback, pacing, time, and
their interactions.

3.3.1. Part A
The ICC of the null model was high and confirmed the

adequateness of a mixed model because 67.7% of the variance
in logarithmic completion time was explained by participants’
characteristics. Our model comparisons estimating the contribution
of each fixed effect showed a negative main effect for time
(see Table 7). This effect remained significant after adjusting
for the family wise error. Hence, all participants, irrespective of
their group, reduced their logarithmic completion time from pre
to post-neurofeedback. The interaction effect of neurofeedback
and time as well as the interaction effect of pacing and time
were negative but failed to reach significance. When taking the
learning rate into account to predict change scores (post–pre) of
logarithmic completion time, we did not observe the expected
negative interaction between neurofeedback and learning rate. These
results suggest that there was no other effect on logarithmic
completion time in part A of the TMT except for the practice
effect.

3.3.2. Part B
For part B of the TMT the logarithmic completion times varied

substantially between participants within the null model (ρ = 0.55).
In line with findings for part A, model comparisons showed a
negative main effect for time indicating that all participants reduced
their logarithmic completion time from pre to post-neurofeedback
(see Table 8). Furthermore, the comparisons revealed a negative
interaction effect for pacing and time. This suggests that participants
in the self-paced group reduced their logarithmic completion time
more than participants in the externally paced groups. Both the main
effect for time and the negative interaction effect for pacing and time
remained significant after adjusting for the family wise error rate
with the estimation of simultaneous confidence intervals. Similar to
part A, a linear model including the learning rates did not show the
expected interaction effect of neurofeedback and learning rate on
logarithmic completion time.

4. Discussion

We designed this study to investigate the effects of learning
rate and control over training on cognitive performance and
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TABLE 5 Generalized linear mixed model (GLMM) for errors in the mental rotation task.

Fixed effects

B (SE) Likelihood ratio test 95% SCI-UB

X2(1) p

Intercept −2.179 (0.296) – – –

Neurofeedback 0.068 (0.189) 0.103 0.75 –

Pacing −0.049 (0.189) 0 1 –

Time −0.392 (0.063) 41.808 <0.001 −0.250

Neurofeedback × pacing 0.320 (0.378) 0.760 0.38 –

Neurofeedback × time 0.062 (0.127) 0.271 0.60 0.346

Pacing × time 0.076 (0.127) 0.129 0.72 0.359

Neurofeedback × pacing × time −0.184 (0.253) 0.517 0.47 0.383

Random effects

σ2

Participant (intercept) 0.413

Angular disparity (intercept) 0.314

Residual 3.290

The unstandardized estimates (B) and their standard error (SE) listed for each fixed effect incorporated in the full model. For completeness, likelihood ratio test result is reported for each fixed
effect by comparing a model including the effect to a corresponding reduced model. For final multiple contrast tests, we relied on the lower bound of one sided 95% simultaneous confidence
intervals (95% SCI-LB).

TABLE 6 Linear mixed model (LMM) for log reaction time in the mental rotation task.

Fixed effects

B (SE) Likelihood ratio test 95% SCI-UB

X2(1) p

Intercept 7.857 (0.134) – – –

Neurofeedback −0.097 (0.062) 2.525 0.112 –

Pacing 0.014 (0.062) 0.120 0.740 –

Time −0.204 (0.009) 632.731 <0.001 −0.185

Neurofeedback × pacing 0.031 (0.124) 0.066 0.797 –

Neurofeedback × time −0.016 (0.017) 0.905 0.341 0.022

Pacing × time 0.030 (0.017) 4.054 0.044 0.068

Neurofeedback × pacing × time 0.016 (0.034) 0.208 0.648 0.092

Random effects

σ2

Participant (intercept) 0.050

Angular disparity (intercept) 0.068

Residual 0.159

The unstandardized estimates (B) and their standard error (SE) listed for each fixed effect incorporated in the full model. For completeness, likelihood ratio test result is reported for each fixed
effect by comparing a model including the effect to a corresponding reduced model. For final multiple contrast tests, we relied on the upper bound of one sided 95% simultaneous confidence
intervals (95% SCI-UB).

electrocortical activity. We randomly assigned participants either
to IUA or sham neurofeedback and subsequently to a self-
or externally paced single training session using a double-blind
design. Before and after neurofeedback all participants performed
the mental rotation task and the TMT to measure changes in
neurocognitive performance. In line with previous research, we
expected that (1) IUA neurofeedback increases IUA activity more
than sham neurofeedback. Additionally, we hypothesized that, (2)
IUA neurofeedback and self-paced training increase the performance

in behavioral tasks to a greater extent than sham neurofeedback
and externally paced training. Finally, we expected that, and (3) the
neurofeedback learning rate relates to performance increase within
the real neurofeedback group. To test these hypotheses, we fitted
a series of mixed models and tested the fixed effects with a priori
contrasts.

We first expected to observe an effect of neurofeedback
on relative IUA activity and our analyses demonstrated that
participants receiving real neurofeedback increased their IUA activity
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TABLE 7 Linear mixed model (LMM) for log completion time in part A of the trail making task.

Fixed effects

B (SE) Likelihood ratio test 95% SCI-UB

X2(1) p

Intercept 3.030 (0.038) – – –

Neurofeedback −0.057 (0.076) 0.578 0.447 –

Pacing 0.025 (0.076) 0.527 0.468 –

Time −0.229 (0.030) 48.590 <0.001 −0.162

Neurofeedback × pacing 0.165 (0.152) 1.250 0.264 –

Neurofeedback × time −0.077 (0.059) 1.754 0.185 0.056

Pacing × time −0.056 (0.059) 0.824 0.364 0.077

Neurofeedback × pacing × time 0.037 (0.119) 0.104 0.747 0.303

Random effects

σ2

Participant (intercept) 0.064

Residual 0.023

The unstandardized estimates (B) and their standard error (SE) listed for each fixed effect incorporated in the full model. For completeness, likelihood ratio test result is reported for each fixed
effect by comparing a model including the effect to a corresponding reduced model. For final multiple contrast tests, we relied on the upper bound of one sided 95% simultaneous confidence
intervals (95% SCI-UB).

TABLE 8 Linear mixed model (LMM) for log completion time in part B of the trail making task.

Fixed effects

B (SE) Likelihood ratio test 95% SCI-UB

X2(1) p

Intercept 3.835 (0.039) – – –

Neurofeedback 0.021 (0.079) 0.078 0.780 –

Pacing −0.051 (0.079) 0.082 0.775 –

Time −0.170 (0.039) 18.577 <0.001 −0.084

Neurofeedback × pacing 0.187 (0.157) 1.497 0.221 –

Neurofeedback × time −0.009 (0.077) 0.014 0.905 0.164

Pacing × time −0.176 (0.077) 5.189 0.023 −0.002

Neurofeedback × pacing × time 0.065 (0.155) 0.188 0.665 0.411

Random effects

σ2

Participant (intercept) 0.062

Residual 0.040

The unstandardized estimates (B) and their standard error (SE) listed for each fixed effect incorporated in the full model. For completeness, likelihood ratio test result is reported for each fixed
effect by comparing a model including the effect to a corresponding reduced model. For final multiple contrast tests, we relied on the upper bound of one sided 95% simultaneous confidence
intervals (95% SCI-UB).

during training by more than twice as much as participants
receiving sham neurofeedback. Regarding resting state IUA activity
measured before and after neurofeedback training, we did not
find any group differences. This is in line with previous work
usually showing differences during training but not in resting-
state activity (Escolano et al., 2014). Even studies applying IUA
neurofeedback for multiple sessions, did not find changes in
resting-state activity between the experimental and a control
group (Nan et al., 2012; Navarro Gil et al., 2018). Therefore, it
seems unlikely that repeated sessions per se would have yielded
more pronounced group differences in resting-state activity. More
research is needed to specify how changes in brain activity

during training relate to behavioral changes measured after the
training. One potential explanation is that resting-state alterations
depend on the magnitude of IUA power change achieved during
neurofeedback (Wan et al., 2014). Our results emphasize the
importance of the magnitude of change (i.e., learning rate) to
increase the targeted brain activity in resting-state. The more
participants increased their IUA activity during neurofeedback,
the more they increased their resting-state IUA activity. As
an extension of previous findings, we additionally controlled
for non-specific factors by comparing this association between
the IUA neurofeedback group and a control group receiving
sham neurofeedback. This comparison revealed that the positive
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linear relationship between learning rate and resting-state activity
was specific to the real neurofeedback group indicating that
participants receiving sham neurofeedback did not increase their
IUA activity sufficiently to yield measurable changes when in resting-
state. Another potential explanation is that different processes
are involved for increased IUA activity through sham feedback
compared to real feedback. Nevertheless, future studies applying
IUA based neurofeedback should take the learning rate during
training as a predictor of differences in resting-state activity into
account.

Both the increase in IUA activity from pre-neurofeedback
resting-state IUA observed during neurofeedback and during
resting-state after neurofeedback are crucial determinants of
plasticity induction (Ros et al., 2014). Therefore, we further
investigated whether these induced alterations in electrocortical
activity transferred to improvements in cognitive performance.
Nevertheless, neither for the mental rotation task nor for the
TMT were there performance differences between participants
receiving IUA neurofeedback and participants receiving sham
neurofeedback regarding their improvements from pre to post-
training. This finding is in line with the results from another
study in which researchers did not observe a significant difference
in improvements in mental rotation task performance between
those groups after a single session of IUA neurofeedback (Escolano
et al., 2014). In contrast to our results, however, the real
neurofeedback group decreased their completion time in part B
of the TMT more than the sham neurofeedback group. As for
changes in electrocortical activity one could argue that a single
session of neurofeedback training was not sufficient to yield large
improvement differences in cognitive performance between real and
sham neurofeedback. In another study with 20 sessions of IUA
neurofeedback participants receiving real neurofeedback improved
their short-term memory performance more than the control
group (Navarro Gil et al., 2018). Importantly, the researchers
reported a strong correlation (r > 0.5) between the increase in
IUA activity from the first to the last session and the increase
in short-term memory performance. However, they compared the
effects of real neurofeedback to a waitlist control condition which
does not rule out non-specific effects and thus might exaggerate
the efficacy of IUA neurofeedback (Sorger et al., 2019). We
applied a double-blind, sham-controlled design to minimize non-
specific effects and our results support the notion of a correlation
between the magnitude of change in IUA activity and an increase
in cognitive performance. Compared to sham neurofeedback,
participants receiving real neurofeedback showed a more positive
association between performance gains in the mental rotation
task and learning rate. This association, however, was absent in
the TMT following the mental rotation task. Compared to the
mental rotation task where we administered 96 trials before and
after neurofeedback, the TMT consisted of only two parts. Hence,
change scores based on the TMT yield less accurate estimates
than change scores based on mental rotation task scores which
we aggregated for each participant. In summary, our results did
not demonstrate an enhanced performance increase under IUA
neurofeedback compared to sham neurofeedback, but our results
indicate an important role for learning rate for explaining changes
in behavioral outcomes.

One of our objectives was to investigate whether self-paced
training improved cognitive performance more than externally
paced training. As indicated by the positive link between mental

strategies and IUA activity as well as the links between self-
paced activities and executive functions (Holgado and Sanabria,
2021), we expected to observe increased performance gains for
participants self-pacing their training. Our results support this
hypothesis demonstrating that self-paced training increased higher-
level cognitive skills more than externally paced training. However,
the effect of pacing was comparable between IUA and sham
neurofeedback indicating that there was no synergistic effect of
the combination of IUA neurofeedback and self-paced training.
Furthermore, we only found a pacing effect in part B of the
TMT which may be explained by the relatively fast completion
times in part A implying a ceiling effect. In the mental rotation
task, participants who self-paced their training did not improve
their performance more than participants receiving externally
paced training indicating a task-dependent effect. One conceptual
difference between the TMT and the mental rotation task is
the degree of self-pacing involved. While participants were not
limited in their completion time for the TMT and were allowed
to connect the circles at their own pace, we imposed a time limit
of 7.5 s per trial in the mental rotation task yielding an externally
paced trial procedure if participants did not respond. Furthermore,
participants could not influence the presentation duration of the
fixation cross throughout the mental rotation task limiting the
extent of self-pacing. Future studies are needed to investigate the
association of self-pacing involved in both training and cognitive
tasks. One way to assess the involvement of conscious and automated
processes in self-paced activity would be asking participants to
report strategies on how they distributed their rest time during
neurofeedback.

Finally, our study has some important limitations regarding
the validity of IUA activity as a predictor of resting-state activity
and cognitive performance. We designed our neurofeedback
procedure to enhance IUA activity during training and based our
assumption that this increases cognitive performance on previous
studies. Nevertheless, we did not assess whether participants’
IUA activity was a valid indicator of performance in the
mental rotation task or the TMT. Furthermore, we did not
estimate the change in other frequency bands close to the IUA
band, which may have contributed more to the changes in
cognitive performance and resting-state activity. Future studies are
required to assess the validity of the targeted frequency band
to increase a related cognitive function. One approach would be
to extract features of neurophysiological signals based on their
correlation with cognitive processes to increase the specificity of
neurofeedback training and take individual variations into account
(Enriquez-Geppert et al., 2017).
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