[en] Aerial manipulators (AM) exhibit particularly challenging, non-linear dynamics; the UAV and its manipulator form a tightly coupled dynamic system, mutually impacting each other. The mathematical model describing these dynamics forms the core of many solutions in non-linear control and deep reinforcement learning. Traditionally, the formulation of the dynamics involves Euler angle parametrization in the Lagrangian framework or quaternion parametrization in the Newton-Euler framework. The former has the disadvantage of giving birth to singularities and the latter being algorithmically complex. This work presents a hybrid solution, combining the benefits of both, namely a quaternion approach leveraging the Lagrangian framework, connecting the singularity-free parameterization with the algorithmic simplicity of the Lagrangian approach. We do so by offering detailed insights into the kinematic modeling process and the formulation of the dynamics of a general
aerial manipulator. The obtained dynamics model is validated experimentally against a real-time physics engine. A practical application of the obtained dynamics model is shown in the context of a computed torque feedback controller (feedback linearization), where we analyze its real-time capability with increasingly complex AM models.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
KREMER, Paul ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Automation
SANCHEZ LOPEZ, Jose Luis ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
VOOS, Holger ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A Hybrid Modelling Approach For Aerial Manipulators
Bartelds, T., Capra, A., Hamaza, S., Stramigioli, S., Fumagalli, M.: Compliant aerial manipulators: toward a new generation of aerial robotic workers. IEEE Robot. Autom. Lett. 1(1), 477–483 (2016). 10.1109/LRA.2016.2519948 DOI: 10.1109/LRA.2016.2519948
Ollero, A.: Aerial robotic manipulators. In: Encyclopedia of Robotics. https://doi.org/10.1007/978-3-642-41610-1_78-1, pp 1–8. Springer, Berlin (2019)
Mohiuddin, A., Tarek, T., Zweiri, Y., Gan, D.: A Survey of Single and Multi-UAV Aerial Manipulation. Unmanned Systems 8(2), 119–147 (2020). 10.1142/S2301385020500089 DOI: 10.1142/S2301385020500089
Ikeda, T., Yasui, S., Fujihara, M., Ohara, K., Ashizawa, S., Ichikawa, A., Okino, A., Oomichi, T., Fukuda, T.: Wall contact by octo-rotor UAV with one DoF manipulator for bridge inspection. IEEE Int. Conf. Intell. Robots Syst., pp. 5122–5127. https://doi.org/10.1109/IROS.2017.8206398 (2017)
Korpela, C., Orsag, M., Oh, P.: Towards valve turning using a dual-arm aerial manipulator, IEEE Int. Conf. Intell. Robots Syst., pp. 3411–3416. https://doi.org/10.1109/IROS.2014.6943037 (2014)
Jimenez-Cano, A.E., Martin, J., Heredia, G., Ollero, A., Cano, R.: Control of an aerial robot with multi-link arm for assembly tasks,. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 4916–4921. https://doi.org/10.1109/ICRA.2013.6631279 (2013)
Heredia, G., Jimenez-Cano, A., Sanchez, I., Llorente, D., Vega, V., Braga, J., Acosta, J., Ollero, A.: Control of a multirotor outdoor aerial manipulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, no. Iros, 2014, pp. 3417–3422, IEEE. https://doi.org/10.1109/IROS.2014.6943038 (2014)
Garimella, G., Kobilarov, M.: Towards model-predictive control for aerial pick-and-place, Proceedings - IEEE International Conference on Robotics and Automation, pp. 4692–4697. https://doi.org/10.1109/ICRA.2015.7139850 (2015)
Bernard, M., Kondak, K.: Generic slung load transportation system using small size helicopters, Proceedings - IEEE International Conference on Robotics and Automation, pp. 3258–3264. https://doi.org/10.1109/ROBOT.2009.5152382 (2009)
Ding, C., Lu, L., Wang, C., Ding, C.: Design, sensing, and control of a novel uav platform for aerial drilling and screwing. IEEE Robot. Autom. Lett. 6(2), 3176–3183 (2021). 10.1109/LRA.2021.3062305 DOI: 10.1109/LRA.2021.3062305
Sanchez-Lopez, J.L., Castillo-Lopez, M., Voos, H.: Semantic situation awareness of ellipse shapes via deep learning for multirotor aerial robots with a 2D LIDAR, 2020 Int. Conf. Unmanned Aircr. Syst., ICUAS 2020, pp. 1014–1023. https://doi.org/10.1109/ICUAS48674.2020.9214063 (2020)
Sanchez-Lopez, J.L., Molina, M., Bavle, H., Sampedro, C., Suárez Fernández, R.A., Campoy, P.: A Multi-Layered Component-Based Approach for the Development of Aerial Robotic Systems: The Aerostack Framework. J. Intell. Robot. Syst.: Theory Appl. 88(2-4), 683–709 (2017). 10.1007/s10846-017-0551-4 DOI: 10.1007/s10846-017-0551-4
Mellinger, D., Lindsey, Q., Shomin, M., Kumar, V.: Design, modeling, estimation and control for aerial grasping and manipulation. IEEE Int. Conf. Intell. Robots Syst., 2668–2673. https://doi.org/10.1109/IROS.2011.6048556 (2011)
Lippiello, V., Ruggiero, F.: Exploiting redundancy in Cartesian impedance control of UAVs equipped with a robotic arm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3768–3773, IEEE. https://doi.org/10.1109/IROS.2012.6386021 (2012)
Suarez, A., Jimenez-Cano, A.E., Vega, V.M., Heredia, G., Rodriguez-Castano, A., Ollero, A.: Lightweight and human-size dual arm aerial manipulator. 2017 Int. Conf. Unmanned Aircr. Syst. ICUAS 2017, pp. 1778–1784. https://doi.org/10.1109/ICUAS.2017.7991357 (2017)
Orsag, M., Korpela, C., Oh, P.: Modeling and control of MM-UAV: Mobile manipulating unmanned aerial vehicle. J. Intell. Robot. Syst.: Theory Appl. 69(1-4), 227–240 (2013). 10.1007/s10846-012-9723-4 DOI: 10.1007/s10846-012-9723-4
Manukyan, A., Olivares-Mendez, M.A., Geist, M., Voos, H.: Deep reinforcement learning-based continuous control for multicopter systems. In: 2019 6th International Conference on Control, Decision and Information Technologies. pp. 1876–1881. https://doi.org/10.1109/CoDIT.2019.8820368 (2019)
Bruno Siciliano, O.K.: Springer Handbook of Robotics. Springer, Heidelberg (2008). 10.1007/978-3-540-30301-5 DOI: 10.1007/978-3-540-30301-5
Kim, S., Choi, S., Kim, H.J.: Aerial manipulation using a quadrotor with a two DOF robotic arm, IEEE Int. Conf. Intell. Robots Syst., pp. 4990–4995. https://doi.org/10.1109/IROS.2013.6697077 (2013)
Jiao, R., Dong, M., Ding, R., Chou, W.: Control of quadrotor equipped with a two dof robotic arm, ICARM 2018 - 2018 3rd Int. Conf. Adv. Robot. Mechatron., pp. 437–442, https://doi.org/10.1109/ICARM.2018.8610770 (2019)
Abaunza, H., Castillo, P., Lozano, R., Victorino, A.: Quadrotor aerial manipulator based on dual quaternions, 2016 Int. Conf. Unmanned Aircr. Syst., ICUAS. pp. 152–161, https://doi.org/10.1109/ICUAS.2016.7502589 (2016)
Abaunza, H., Castillo, P., Victorino, A., Lozano, R.: Dual quaternion modeling and control of a quad-rotor aerial manipulator. J. Intell. Robot. Syst. Theory Appl. 88(2-4), 267–283 (2017). 10.1007/s10846-017-0519-4 DOI: 10.1007/s10846-017-0519-4
Hemingway, E.G., O’Reilly, O.M.: Perspectives on Euler angle singularities, gimbal lock, and the orthogonality of applied forces and applied moments. Multibody Syst. Dyn. 44(1), 31–56 (2018). 10.1007/s11044-018-9620-0 DOI: 10.1007/s11044-018-9620-0
Tassora, A.: An optimized Lagrangian multiplier approach for interactive multibody simulation in kinematic and dynamical digital prototyping, VII ISCSB, Ed. CLUP. pp. 3–12 (2001)
Emami, S.A., Banazadeh, A.: Simultaneous trajectory tracking and aerial manipulation using a multi-stage model predictive control. Aerosp. Sci. Technol. 112, 106573 (2021). 10.1016/j.ast.2021.106573 DOI: 10.1016/j.ast.2021.106573
Fanni, M., Khalifa, A.: A new 6-DOF quadrotor manipulation system: Design, kinematics, dynamics, and control. IEEE/ASME Trans. Mech. 22(3), 1315–1326 (2017). 10.1109/TMECH.2017.2681179 DOI: 10.1109/TMECH.2017.2681179
Wang, T., Umemoto, K., Endo, T., Matsuno, F.: Dynamic hybrid position/force control for the quadrotor with a multi-degree-of-freedom manipulator. Artificial Life and Robotics 24(3), 378–389 (2019). 10.1007/s10015-019-00534-0 DOI: 10.1007/s10015-019-00534-0
Nascimento, T.P., Saska, M.: Position and attitude control of multi-rotor aerial vehicles: a survey. Annu. Rev. Control 48, 129–146 (2019). 10.1016/j.arcontrol.2019.08.004 DOI: 10.1016/j.arcontrol.2019.08.004
Acosta, J., Sanchez, M., Ollero, A.: Robust control of underactuated aerial manipulators via IDA-PBC. In: 53rd IEEE Conference on Decision and Control, Vol. 2015-Febru, IEEE, pp. 673–678. https://doi.org/10.1109/CDC.2014.7039459 http://ieeexplore.ieee.org/document/7039459/ (2014)
Ali, Z.A., Li, X.: Controlling of an under-actuated Quadrotor UAV equipped with a manipulator. IEEE Access 8, 34664–34674 (2020). 10.1109/ACCESS.2020.2974581 DOI: 10.1109/ACCESS.2020.2974581
Liang, J., Chen, Y., Lai, N., He, B., Miao, Z., Wang, Y.: Low-complexity prescribed performance control for unmanned aerial manipulator robot system under model uncertainty and unknown disturbances, IEEE Trans. Ind. inform. PP (c) 1. https://doi.org/10.1109/TII.2021.3117262 (2021)
ROS: URDF XML Specifications. http://wiki.ros.org/urdf/XML (2013)
Craig, J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Education, London (2005)
Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics, Advanced Textbooks in Control and Signal Processing. Springer, London (2009). 10.1007/978-1-84628-642-1
Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972). 10.1016/0045-7825(72)90018-7 DOI: 10.1016/0045-7825(72)90018-7
Möller, M., Glocker, C.: Rigid body dynamics with a scalable body, quaternions and perfect constraints. Multibody Syst. Dyn. 27(4), 437–454 (2012). 10.1007/s11044-011-9276-5 DOI: 10.1007/s11044-011-9276-5
Udwadia, F.E, Schutte, A.D.: An Alternative Derivation of the Quaternion Equations of Motion for Rigid-Body Rotational Dynamics. J Appl Mechan 77(4), 0–4 (2010). 10.1115/1.4000917 DOI: 10.1115/1.4000917
Schutte, A., Udwadia, F.: New approach to the modeling of complex multibody dynamical systems. J. Appl. Mech., Transactions ASME, vol 78 (2) https://doi.org/10.1115/1.4002329 (2011)
Bjerkeng, M., Pettersen, K.Y.: A new Coriolis matrix factorization. In: Proceedings - IEEE International Conference on Robotics and Automation. pp. 4974–4979. https://doi.org/10.1109/ICRA.2012.6224820 (2012)
Graf, B.: Quaternions and dynamics, dynamical systems. arXiv: 0811.2889 (2008)
Kotarski, D., Krznar, M., Piljek, P., Simunic, N.: Experimental Identification and Characterization of Multirotor UAV Propulsion. J. Phys.: Conf. Ser. 870(1), 012003 (2017). 10.1088/1742-6596/870/1/012003
Yoon, M.: Experimental identification of thrust dynamics for a multi-rotor helicopter. Int. J. Eng. Res. Technol. (IJERT) 4,(11) (2015)
Yoon, S., Howe, R.M., Greenwood, D.T.: Constraint violation stabilization using gradient feedback in constrained dynamics simulation. J. Guid. Control. Dyn. 15(6), 1467–1474 (1992). 10.2514/3.11410 DOI: 10.2514/3.11410
Braun, D.J., Goldfarb, M.: Eliminating constraint drift in the numerical simulation of constrained dynamical systems. Comput. Methods Appl. Mech. Eng. 198(37-40), 3151–3160 (2009). 10.1016/j.cma.2009.05.013 DOI: 10.1016/j.cma.2009.05.013
Sherif, K., Nachbagauer, K., Steiner, W.: On the rotational equations of motion in rigid body dynamics when using Euler parameters. Nonlinear Dyn. 81(1-2), 343–352 (2015). 10.1007/s11071-015-1995-3 DOI: 10.1007/s11071-015-1995-3
Xu, J., Halse, K.H.: Dual quaternion variational integrator for rigid body dynamic simulation. arXiv: 1611.00616
Erwin, B., Coumans, Y.: PyBullet, a Python module for physics simulation for games, robotics and machine learning. http://pybullet.org (2020)
Solà, J.: Quaternion kinematics for the error-state Kalman filter. arXiv: 1711.02508
Solà, J., Deray, J., Atchuthan, D.: A micro Lie theory for state estimation in robotics. pp. 1–17, arXiv: 1812.01537 (2018)