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Abstract
Aerial manipulators (AM) exhibit particularly challenging, non-linear dynamics; the UAV and its manipulator form a tightly
coupled dynamic system, mutually impacting each other. The mathematical model describing these dynamics forms the core
of many solutions in non-linear control and deep reinforcement learning. Traditionally, the formulation of the dynamics
involves Euler angle parametrization in the Lagrangian framework or quaternion parametrization in the Newton-Euler
framework. The former has the disadvantage of giving birth to singularities and the latter being algorithmically complex. This
work presents a hybrid solution, combining the benefits of both, namely a quaternion approach leveraging the Lagrangian
framework, connecting the singularity-free parameterization with the algorithmic simplicity of the Lagrangian approach.
We do so by offering detailed insights into the kinematic modeling process and the formulation of the dynamics of a general
aerial manipulator. The obtained dynamics model is validated experimentally against a real-time physics engine. A practical
application of the obtained dynamics model is shown in the context of a computed torque feedback controller (feedback
linearization), where we analyze its real-time capability with increasingly complex AM models.

Keywords Multi-body dynamics · Dynamic model · UAV · Modeling · Aerial manipulation · Manipulator · Lagrange

1 Introduction

Aerial Manipulators (AM) are flying, autonomous, resp.
semi-autonomous, multirotor, Unmanned Aerial Vehicles
(UAVs, or drones) carrying one, or multiple robotic arms
to perform specific manipulation tasks. The field of aerial
manipulation has seen many recent developments [2,
3], with solutions being developed ranging from bridge
inspection [4], to maintenance [5], to assembly [6], various
pick and place tasks [7, 8], slung load transportation
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[9], cooperative transportation [10] and even drilling and
screwing [11]. UAVs are becoming increasingly aware
of their surroundings [12]. Still, even with autonomous
navigation [13], their capabilities of interaction with the
environment remain limited.

Some tasks in aerial manipulation can be performed with
relatively simple static claws [14] with only minimal impact
on the carrying platform. However, more complex tasks
require the additional degrees of freedom (DOF) offered
by serial link manipulators [5, 15–17]. A typical AM is
shown in Fig. 1. Those manipulators are often relatively
heavy and have a substantial dynamic impact on their carry-
ing, generally, under-actuated flying platform. This impact
stems from multiple sources, such as the reaction forces and
torques related to the movement of the manipulator, or the
shifting center of gravity related to the changing physical
configuration of the manipulator, and by contact forces due
to the direct interaction with the environment.

The mathematical model describing the tightly coupled
dynamics of such systems is a key component e.g., in deep
reinforcement learning, where the neural network may learn
how to control a dynamic system based on its accurate
simulation [18], but also in traditional, non-linear control.
The derivation of the kinematics and dynamics model is a
well-studied subject in classical robotics, falling under the
category of mobile robotics [19], where the floating base is
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Fig. 1 Illustration of a typical aerial manipulator; a quadcopter with a
3-DOF serial link manipulator. Indicated are the frames of reference
for the joints Ji , the inertial (body) frames Bi and forces of the
propulsion devices for thrust f̄thr and drag f̄drag

modeled via a 6-DOF joint. In aerial manipulation, however,
the parametrization of rotational DOF often employs Euler
angles [6, 16, 20, 21], which gives birth to singularities, or
complex dual number formulations (dual quaternion) [22,
23], which can be hard to implement.

As tasks in aerial manipulation gain in complexity, Euler
angles (resp. any three-angle representation of orientations)
become a burden as they exhibit gimbal lock [24] in certain
conditions (Fig. 9). Traditional UAVs generally operate at a
safe distance from those conditions, but they can still exhibit
them during certain maneuvers e.g. by flipping them about
their roll axis or as a consequence of interaction with their
surroundings. Therefore, it is important for the control
designer to have a dynamics model that stays valid under
any circumstances. To that end, we propose a hybrid solution
to the dynamics modeling: by combining unit quaternion para-
meterization with the simplicity of the Lagrangian frame-
work, a singularity-free, dynamics model is obtained, with-
out resorting to the complexity of dual number formulations
resp. the algorithmic complexity of Newton-based meth-
ods. Our approach is kept relatively general with the goal to
cover most AM configurations (even tilting propeller con-
figurations - to some extend), and the different steps are
described in detail to facilitate practical implementations.

1.1 RelatedWork

The dynamics of a multi-body system are commonly derived
using either Newton or energy-based methods. The recur-
sive Newton-Euler algorithm (RNEA) and the composite-
rigid-body algorithm (CRBA) [19] are very popular choices
of Newton-based methods. The Euler-Lagrange equations
are conceptually much simpler and thus easier to implement.

However, Newton-based methods often yield more compact
solutions [25] at the expense of being algorithmically more
complex.

Currently, it is common practice to combine quaternion
attitude representation with a complex, Newton-based
method, and Euler attitude representation with the simpler
Lagrangian formulation. The authors of [20, 21] derived the
coupled model of an AM with a 2-DOF manipulator using
Euler angles and Lagrangian mechanics. The same approach
was chosen for a dual 5-DOF arm configuration in [16] and
a 3-DOF manipulator in [26]. A dual-quaternion approach
employing the Euler-Lagrange formalism has been chosen
in [23]. In [17], the authors chose to derive the dynamics of
three 2-DOF manipulators using the Newton-Euler method.
The authors of [27] followed the same approach, with the
focus on the inverse kinematics with holonomic constraints.
In [6], the dynamics were derived using the Newton-Euler
method and Euler angles. In [28], the authors presented
an approach within the Lagrangian framework (employing
Euler angles) that handles constraints applied to the end-
effector by introducing an additional constraint term to the
dynamics equation. In this work, the coupled dynamics,
using singularity-free quaternion representation, is derived
in detail using the simpler Euler-Lagrange equations, thus
offering an appealing alternative (resp. middle ground) to
the state of the art.

The state of the art with regard to model-based control
techniques can be found in [29]. Some highlights include the
robust, adaptive sliding mode controller introduced in [20],
the variable parameter integral backstepping controller in
[6, 7], the passivity based controller in [30], the disturbance
observer-based control in [27], the hybrid position and force
controller respecting constraint conditions presented in [28],
and the model reference adaptive control in [31]. The
authors of [32] specifically addressed the problem of model
uncertainty and unknown disturbances by employing a
nonlinear disturbance observer in conjunction with a robust
prescribed performance controller. All of those control
schemes have the dynamics model of their controlling
system at their core, whilst being robust towards modeling
imperfections. This work focuses primarily on modeling the
dynamics of AMs. Therefore, only a basic PD controller
with a bias correction term gets utilized, as it does not
compensate (thus hide) model imperfections.

1.2 Contributions

The main contribution of this work is a general-purpose,
user-friendly, yet powerful dynamics framework for aerial
manipulation, that yields a singularity-free, closed-form
dynamics model of an aerial manipulator. Although we do
not target tilting propeller resp. fully actuated UAV confi-
gurations in this work, the results presented herein are
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general enough to be applicable to those configurations as
well (assuming that the reaction torque of the tiling mecha-
nism and its impact on the center of gravity are negligible).

The contributions of this work are thus stated as
follows: 1. Providing a hybrid approach with regard to the
dynamics modeling of aerial manipulators, by combining
quaternion parametrization and Lagrangian mechanics. This
is contrary to what most authors do in this field, namely
using either Euler angle parameterization in the Lagrangian
framework, or quaternion parameterization in the Newton-
Euler framework. The approach presented here leads to
a relatively generic, singularity-free, coupled dynamics
model. Implementing our approach requires significantly
less coding than Newton-based methods thanks to the
algorithmic simplicity of the Lagrangian framework. In
fact, the bulk of the work consists in implementing the
simple kinematic equations, contrary to the Newton-Euler
algorithm, which also involves expressing the respective
force and torque equations in a recursive manner [19].
2. The derivation of the kinematics resp. the dynamic
model often comes up short in many publications, where
the focus is often on control, rather than the modeling.
This perceived lack of modeling methodology is addressed
herein, showing all the required steps and thus providing
insights into the normally hidden process, lowing the
barrier to entry in the field of aerial manipulation. 3. The
introduction of a general-purpose dynamics framework for
aerial manipulators based on a URDF [33] description of
the system. 4. By making use of the Lagrangian mechanics
framework and by refraining from using dual quaternions
(dual numbers), in combination with the mapping of
all quaternion operations to matrix-vector products, the
results presented here are particularly well suited to be
implemented with common computer algebra systems
(CAS). 5. Two applications of the model are shown. First,
in a simulation resp. validation context where the obtained
model is validated against an identical reference model
simulated in a realtime physics engine. And second, as part
of an adaptation of a computed torque controller adopted
from classical robotics to work in an aerial manipulation
context. 6. Performance figures with regard to the algebraic
complexity and the real-time capability are provided for two
typical scenarios, namely on-board resp. off-board control
using increasingly complex AM. Furthermore, we compare
the complexity of the resulting dynamics equations obtained
from different methods.

1.3 Structure

This work is organized as follows. In Section 2.1, we
start with the kinematics of a single body in the inertial
frame, followed by the kinematic equations of an open
kinematic chain manipulator with regard to its own base

frame in Section 2.2. Then, by combining those results
(Section 2.3), the base of the robot is turned into a floating
platform, providing additional 6-DOF, which results in the
complete kinematic equations of the manipulating system
in the world frame. The kinematic equations are then fed
into the Lagrangian framework (Section 3) in order to obtain
the dynamics equations. It follows the non-trivial mapping
between body forces and generalized forces resp. propulsion
forces and body forces in Section 3.4. Finally, in Section 4,
a general-purpose holonomic constraint solver is applied
to the unconstrained system to impose the quaternion unit
constraint via a constraint force. In Section 5, the obtained
dynamic model is validated in simulation against a real-time
physics engine. As an application, a stabilizing controller
is introduced in Section 6 that uses the developed dynamic
model to cancel the nonlinearities present in the AM. We
proceed by presenting performance figures regarding the
algebraic complexity and the real-time capability of the
model within the control context in Section 6.3. This work
is then summarized and concluded in Section 7. For the
interested readers, a brief introduction to the field of (unit)
quaternions is given in Appendix A. The nomenclature is as
stated in Table 1.

2 Kinematics

The following section derives the forward kinematics of the
combined (coupled) system formed by the manipulator and
its carrying, flying platform. Commonly, this is done by
introducing a 6-DOF joint between the world frame and the

Table 1 Notation, frequently used symbols

Symbol Definition

p̄ Vector p̄
W Inertial frame

Bi Body frame i

Ji Joint frame i

Li Link frame i
An̄B A normal vector situated in B expressed in A
Ap̄CD A vector that spans from C to D, in A
Aω̄C

D Angular velocity of D, relative to C, in A
Av̄CD Linear velocity of D, relative to C, in A

A Matrix A
WRB Rotation matrix mapping from B to W
WAB Homogeneous transformation mapping from B to W

q Quaternion

NJ Number of joints

NB Number of bodies

NL Number of links

Nx Number of coordinates
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first body. In this work, however, it is more convenient to
first describe the kinematics of the two subsystems (drone
and manipulator) and then, as the last step, merge both
systems together. The drone then acts as the 6-DOF joint.

2.1 UAV Body Kinematics

Given a UAV, represented by base link L0 and the body B0

in the kinematic chain as depicted in Fig. 2. Its orientation
is described by the quaternion q = (

qw, q̄v

) ∈ S3, and its
position in the world frame W is given by the vector

Wp̄WL0 = [x, y, z] ∈ R
3. (1)

The base link’s angular velocity Wω̄W
L0 ∈ R

3, expressed in W,
relative to W, is tied to the quaternion q via
(
0, Wω̄W

L0

) = 2q̇ ⊗ q∗. (2)

Which can be written in matrix form using Eq. A.16

WωW
L0 = 2 [q]ᵀR q̇. (3)

Similarly, the base link’s angular velocity expressed in L0,
relative to W can be written as
(
0, L0 ω̄W

L0

) = 2q∗ ⊗ q̇, (4)

respectively with the help of Eq. A.15

L0ωW
L0 = 2 [q]ᵀL q̇. (5)

Since WωW
L0 and L0ωW

L0 are pure quaternions, their vector
part can directly be obtained by dropping the first row

Fig. 2 Example of a URDF compliant kinematic tree of a branched
kinematic chain. The link and joint frames are annotated as Li resp. Ji .
The body frame Bi has an associated mass and moment of inertia. It
marks the center of mass of its parent link Ji . L0 marks the base link of
the robot (namely the UAV). The edges between the nodes (see detail)
represent coordinate transformations between two frames denoted by
XAY

from Eq. 3 resp. Equation 5 yielding the two orthogonal
mapping matrices E and G defined by
Wω̄W

L0 = 2
[−q̄v qw13 + [

q̄v

]
×
]

︸ ︷︷ ︸
E∈R3×4

q̇ (6)

resp.
L0 ω̄W

L0 = 2
[−q̄v qw13 − [

q̄v

]
×
]

︸ ︷︷ ︸
G∈R3×4

q̇. (7)

Solving Eq. 7 for q̇ and replacing it into Eq. 6 reveals the
relation between WωW

L0 and L0ωW
L0 :

Wω̄W
L0 = EGᵀ

︸︷︷︸
WRL0

L0 ω̄W
L0, (8)

where WRL0 ∈ SO (3) is the orthogonal rotation matrix
associated with q.

2.2 Kinematics of theManipulator

In the following section, the forward kinematics of an
open-chain manipulator is developed. Although the base
link of the manipulator is represented by the UAV, for the
development in this section, the base link L0 is regarded as
static and all quantities of motion are expressed in and with
regard to L0 (Fig. 2). The development largely follows the
procedures found in classical robotics literature [19, 34, 35]
and [36] with some changes to the kinematic tree that are
required to seamlessly interface with the Universal Robot
Description Format specifications.

A generic high-level description of a robotic arm can
be stated in form of a URDF, providing all required
kinematic and physical properties of a robotic manipulator.
Its conventions concerning reference frames, links, joints
and parents have been adopted here to facilitate the
translation from an AM given as a URDF file to its system
dynamics.

The URDF structure is standardized and describes an
(open) kinematic chain formed by various types of nodes.
Nodes are defined as either joints Ji, links Li or bodies
Bi (Fig. 2), and are related to each other by homogeneous
transformations such as

XAY =
[
XRY

Xp̄XY
0̄ 1

]
∈ SE(3). (9)

The key aspects of the URDF are summarized as follows
(refer to [33] for further details):

• The kinematic chain starts with the base link L0
• Each link can be the parent of multiple joints, thus

creating branched structures
• Each joint is the parent of the single link
• Each link has a (rigid) body associated to it. Its frame

Bi defines the center of mass (CM) of the body having
the mass mi and the moment of inertia �i .
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• The transformation (edge) between two nodes is
defined by a homogeneous transformation XAY

Those physical properties mi , �i and XAY are best obtained
directly from CAD data.

Let there be a manipulator with J = {J1,J2, . . . ,JN} joints,
L = {L0,L1, . . . ,LN} links and B = {L0,L1, . . . ,LN}
bodies forming a kinematic tree of nodes e.g. as shown in
Fig. 2. To traverse the kinematic tree, let there be a function
p(i) that retrieves an ordered list of all parents of node i

starting at node i and ending with the base link L0.
The transformation of each node i in the tree with regard

to L0 is given by the product of each local transformation A
between the node i and L0

L0Ai =
∏

A∈p(i)

A. (10)

Generally, LiABi ,
LiAJi are constants defined by the

physical configuration of the robot. On the other hand
JiALi is a function of the joint position. For revolute joints,
JiALi (θi) designates a rotation around the local joint axis
Ji n̄Ji ∈ R

3, ‖n̄‖ = 1 (e.g. the local z-axis), with an angle
θi , which corresponds to Eq. A.19 and can be encapsulated
in the homogeneous transformation

JiALi (θi) =
[
R
(
θi,

Ji n̄Ji
)
0̄

0̄ 1

]
. (11)

Notice that although herein the focus is on revolute joints,
a completely analogous procedure can be followed for
prismatic joints.

The position of each node with respect to L0 is obtained
by the relation
[
L0 p̄L0i
1

]
= L0Ai

[
0̄
1

]
. (12)

The angular velocity of Bi relative to its parent joint Ji

and expressed in Ji is denoted as Ji ω̄
Ji
Bi (Fig. 3), which

can be expressed in terms of its rotation axis and angular
velocity

Ji ω̄
Ji
Bi = Ji n̄Ji θ̇Ji . (13)

It is clear that the body frame Bi, and the link Li must have
the same angular velocity since BiALi is constant, therefore
Ji ω̄

Ji
Li = Ji ω̄

Ji
Bi .

By multiplying with the rotational part L0RJi of L0AJi ,
the angular velocity is obtained with respect to L0:

L0 ω̄
Ji
Bi = L0RJi

Ji ω̄
Ji
Bi . (14)

Using Eq. 13, it follows

L0 ω̄
Ji
Bi = L0RJi

Ji n̄Ji θ̇Ji . (15)

With all angular velocities expressed in the same frame of
reference, the total angular velocity (relative to the base

link) of each body is obtained by the sum of the angular
velocities Eq. 15 over all of its ancestors:

L0 ω̄
L0
Bi =

∑

Jj∈p(Bi)

L0 n̄Jj θ̇Jj . (16)

Rewriting Eq. 16 as matrix-vector product then yields the
Jacobian for rotation L0Jω,i for the i-th body in the chain.
The k-th element of that matrix is given by

L0Jω,i,k =
{
L0 n̄Jk, if Jk ∈ p (Bi)

0̄ otherwise
. (17)

Noncontributing joints are thus accounted by a 0̄ contribu-
tion.

The linear, sectional velocity of the body L0 ˙̄pJiBi due to
the rotational movement JjABi of one of its ancestral joints
Jj ∈ p(Bi ) is given by the tangential velocity

L0 ˙̄pJjBi = L0 ω̄
Jj
Bi ×

(
L0 p̄L0Jj − L0 p̄L0Bi

)

︸ ︷︷ ︸
L0 p̄

Jj
Bi

, (18)

where L0 p̄
Jj
Bi defines the lever formed between the frames

Jj and Bi (see Fig. 3). By using identity Eq. 14 and defining
L0 r̄

Jj
Bi = L0 n̄j × L0 p̄

Jj
Bi , Eq. 18 can be written as

L0 ˙̄pJjBi = L0 r̄
Jj
Bi θ̇Jj . (19)

With all of the sectional velocities expressed with regard to
L0, adding them yields the total linear velocity of Bi

L0 ˙̄pL0Bi =
∑

Jj∈p(Bi)

L0 r̄
Jj
Bi θ̇Jj, (20)

Fig. 3 Kinematics of a 2 DOF manipulator showing the angular and
tangential velocity of the body frame B2 due to the movement of the
joints J1 and J2
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This sum can also be written as L0 ˙̄pL0Bi = L0Jt,iθ̄ , where
L0Jt,i is the Jacobian matrix for translation. The k-th
element of that matrix is given by

L0Jt,i,k =
{
L0 r̄JkBi, if Jk ∈ p (Bi)

0̄ otherwise
. (21)

Joints that are not an ancestor of Bi do not add to its velocity
and their contribution is thus 0̄.

Equations 19 and 16 can thus be expressed in terms of the
Jacobian matrices Eqs. 17 and 21. The total linear velocity
is given by

L0 ˙̄pL0Bi = L0Jt,i
˙̄θ , (22)

with the total angular velocity L0 ω̄Bi of body i being

L0 ω̄
L0
Bi = L0Jω,i

˙̄θ , (23)

where θ̄ = [
θJ1, . . . , θJN

] ∈ R
NJ is the vector of all joint

positions.

2.3 Kinematics of theManipulator Attached to the
Flying Base

In the previous section, the kinematics of the manipulator
was derived with regard to L0. Attaching the manipulator
onto a floating base (the UAV here) endows the system with
an additional 6 DOF. To account for those 6 DOF, it suffice
to describe the forward kinematics of the manipulator with
regard to the inertial frame W, knowing that the floating
base is located at a position p̄ from the origin and that its
orientation with regard to W is given by the unit quaternion
q, essentially inserting a virtual 6-DOF joint in between W
and L0 that is parametrized by p̄ and q.

Looking at the system from W, it is clear that the position
Wp̄L0Bi of each body of the manipulator in W with regard to L0

is superimposed by the position Wp̄WL0 of the floating base,
resulting in the absolute link position

Wp̄WBi = Wp̄WL0 + Wp̄L0Bi . (24)

Each link’s position in W is obtained by rotating it by q, such
as:
(
0, Wp̄L0Bi

)
= q ⊗

(
0, L0 p̄L0Bi

)
⊗ q∗. (25)

The link velocity is then obtained from the time derivative
of its position vector Eq. 25

W ˙̄pWBi = d

dt

(Wp̄WBi
)
. (26)

Inserting Eq. 25 in Eq. 26 yields
(
0, W ˙̄pWBi

) = (
0, W ˙̄pWL0

)

+q ⊗
(
0, L0 ˙̄pL0Bi

)
⊗ q∗

+q̇ ⊗
(
0, L0 p̄L0Bi

)
⊗ q∗ + q ⊗

(
0, L0 p̄L0Bi

)
⊗ q̇∗.

(27)

By multiplying the left resp. right side of the last two terms
in Eq. 27 by 1 = q⊗q∗ the following expression is obtained:
(
0, W ˙̄pWBi

) = (
0, W ˙̄pWL0

)

+q ⊗
(
0, L0 ˙̄pL0Bi

)
⊗ q∗

+q ⊗
[
q∗ ⊗ q̇ ⊗

(
0, L0 p̄L0Bi

)
+
(
0, L0 p̄L0Bi

)
⊗ q̇∗ ⊗ q

]
⊗ q∗.

(28)

Applying Eq. 4 yields
(
0, W ˙̄pWBi

) = (
0, W ˙̄pWL0

)

+q ⊗
(
0, L0 ˙̄pL0Bi

)
⊗ q∗

+q ⊗
[(

0, 1
2
L0 ω̄

L0
L0

)
⊗
(
0, L0 p̄L0Bi

)

+
(
0, L0 p̄L0Bi

)
⊗
(
0, − 1

2
L0 ω̄

L0
L0

)]
⊗ q∗.

(29)

Evaluating the two pure quaternion products using Eq. A.3
then results in
(
0, W ˙̄pWBi

) = (
0, W ˙̄pWL0

)

+q ⊗
(
0, L0 ˙̄pL0Bi

)
⊗ q∗

+q ⊗ 1
2

[(
−L0 ω̄

L0
L0

L0 p̄L0Bi,
L0 ω̄

L0
L0 × L0 p̄L0Bi

)

+
(
L0 ω̄

L0
L0

L0 p̄L0Bi ,
L0 ω̄

L0
L0 × L0 p̄L0Bi

)]
⊗ q∗,

(30)

which further simplifies to
(
0, W ˙̄pWBi

) = (
0, W ˙̄pWL0

)

+q ⊗
(
0, L0 ˙̄pL0Bi

)
⊗ q∗

+q ⊗
[(

0, L0 ω̄L0
L0 × L0 p̄L0Bi

)]
⊗ q∗.

(31)

Using Eqs. 6, 7, 8 and A.17, it can further be transformed
into
W ˙̄pWBi = W ˙̄pWL0+WRL0

L0 ˙̄pL0Bi
−WRL0

[
L0 p̄L0Bi

]

×
L0 ω̄

L0
L0 .

(32)

Introducing Eqs. 7 and 22 finally yields the complete
equation of the linear velocity of Bi in the inertial frame

W ˙̄pWBi = W ˙̄pWL0 (base translation)

+ WRL0
L0Jt,i

˙̄θ (joint rotation)

− 2WRL0

[
L0 p̄L0Bi

]

× Gq̇ (base rotation)

(33)

showing the contributions of the moving base and the
rotating links. In particular, the last term shows the
component of the translational velocity due to the lever
L0 p̄L0B,i and the angular velocity of the base.

The angular velocity of the bodies is simply the
superposition of their own angular velocity and that of the
base link in the inertial frame:
(
0, Wω̄W

Bi

) = (
0, Wω̄W

L0

)+ q ⊗
(
0, L0 ω̄L0

Bi

)
⊗ q∗. (34)
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By inserting Eqs. 3 and 23 and writing the equation in
matrix form then yields the expression for Bi’s angular
velocity in world frame as the 4-vector
[

0
Wω̄W

Bi

]
= 2 [q]ᵀR q̇ +

[
0

WRL0
L0Jω,i

]
˙̄θ . (35)

3 SystemDynamics

Using the kinematic equations of the system from the
previous section, the system dynamics can now be obtained
by leveraging the Lagrangian framework. In the following
section, the direct dynamics are derived from the kinematic
Eqs. 33 and 35. Furthermore, the relation between the body-
and generalized forces is established from the principle of
virtual work. Lastly, those body forces are defined in the
context of an AM.

3.1 State Space and System Jacobian

The state space z̄ of the combined system is defined by
the choice of the (generalized) coordinates, namely the
orientation given by the quaternion q, the position p̄ and the
NJ joint angles collected in θ̄ :

z̄ = [
x̄ ˙̄x] , (36)

with

x̄ = [
p̄ q θ̄

] ∈ R
7+NJ . (37)

The rotational and translational velocity of each particle
of the system can be written in form of v̄ = WJ (x̄) ˙̄x, where
v̄ is the vector of angular and linear velocities of each body
of the system:

v̄ =
[
W ˙̄pWB0, . . . , W ˙̄pWBN−1

,
(
0, W ˙̄ωW

B0

)
, . . .

(
0, W ˙̄ωW

BN−1

)]
. (38)

WJ is the system’s Jacobian matrix which is composed by
the individual components of Eqs. 33 and 35:

WJ =

⎡

⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

WJt,0
...

WJt,NJ
WJω,0

...
WJt,NJ

⎤

⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

∈ R
7NB×(7+NJ ), (39)

with the individual Jacobian matrices for translation being

WJt,i =
[
13 −2WRL0

[
L0 p̄L0Bi

]

× G WRL0
L0Jt,i

]
∈ R

3×(7+NJ ), (40)

and for rotation being

WJω,i =
[
04×3 2 [q]ᵀR

[
0

WRL0
L0Jω,i

] ]
∈ R

4×(7+NJ ). (41)

3.2 Equations of Motion

Solving the Lagrangian equations is an algorithmically
simple way of retrieving the dynamics equations. It does,
however, come with some requirements concerning the
choice of the coordinates. More precisely, the coordinates
need to be independent and complete. It is clear that the
chosen coordinates Eq. 37 are complete and can represent
any configuration of the system. The requirement of
independent coordinates is however not met e.g. fixing the
coordinates qx , qy , qz of q fully constrains qw by the unity
constraint (Eq. A.4), such that ‖q‖ = 1. In other words,
the system has more coordinates than degrees of freedom.
For the time being, we assume that all coordinates are
independent. The holonomic constraint forces are handled
later in Section 4.

In the Lagrangian framework, the system dynamics are
obtained by solving the Euler-Lagrange equations [37]

d

dt

∂L
∂ ˙̄x − ∂L

∂ x̄
= f̄x + f̄c, (42)

where L = Ekin − Epot is the Lagrangian, x̄ the state space
of the system, f̄x ∈ R

Nx are the generalized forces resp.
torques along the generalized coordinates, and f̄c ∈ R

Nx

mark the constraint forces, pulling the system towards the
manifold defined by the holonomic constraints. Herein, the
constraint forces arise by the virtue of the unit quaternion
coordinates not being independent.

In the case of mechanical systems, the solution of Eq. 42
takes the following particular form [19]:

M (x̄) ¨̄x + C
(
x̄, ˙̄x) ˙̄x + ḡ (x̄) = f̄x + f̄c, (43)

where M ∈ R
Nx×Nx is the mass matrix, C ∈ R

Nx×Nx the
Coriolis matrix and ḡ ∈ R

Nx the vector of gravitational
terms. The total kinetic energy of the system is given by

Ekin = 1

2
˙̄xWJᵀML

WJ ˙̄x (44)

with ML being the generalized inertia matrix of the system
represented by the block diagonal formed by the individual
body masses mi and the moments of inertia W�i in world
frame [38, 39]. It is defined as

ML = blockdiag
(
13m0, . . . , 13mNB−1,

W�0, . . . ,
W�NB−1

)
, (45)

with W�i being linked to the classical inertia tensor W�i by

W�i =
[
ν 0̄
0̄ W�i

]
∈ R

4×4. (46)

Therein, ν is associated with the scaling DOF of a body,
such would be the case without enforcing ‖q‖ = 1.
However, since q is assumed to be of unit length, the bodies
of the system are rigid and ν does not come into play. As
such, ν can be defined as any positive number.
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Solving Eq. 42 directly via calculating L becomes
impractical resp. computationally expensive and thus time-
consuming for larger systems. A much faster approach
is the factorization into the individual system matrices
Eq. 43 which has the additional benefit of not having to
separate the individual components into their respective
matrix. Once the expression for the system’s mass matrix
is obtained, the Coriolis matrix can be obtained from its
Christoffel symbols. The gravitational terms are obtained
from the potential energy, which is usually a relatively small
expression and thus inexpensive to compute.

By analyzing Eqs. 43 and 44, it can be seen that the
only resulting term in ¨̄x, corresponding to the system’s
mass matrix M (symmetric, positive semi-definite [40]), is
obtained from

M = WJᵀML
WJ, (47)

The system’s Coriolis matrix C ∈ R
Nx×Nx containing

the centrifugal and centripetal terms is obtained by
calculating the Christoffel symbols first kind from the mass
matrix Eq. 47 [19]. Its individual components are given by

Cij = 1

2

Nx∑

k=1

(
∂Mij

∂ x̄k

+ ∂Mik

∂ x̄j

− ∂Mjk

∂ x̄i

)
˙̄xk . (48)

The definition of the Coriolis matrix is not unique and that
different choices are possible (e.g. [41]) having different
properties. The choice herein has the property of Ṁ −
2C being skew-symmetric, a useful property for controller
design [19].

Lastly, the system’s gravity vector ḡ is obtained from the
gradient of the potential energy

Epot (x̄) =
NB−1∑

i=0

mi ḡ0
Wp̄WBi , (49)

with ḡ0 being the gravitational acceleration. The vector
ḡ contains the gravitational terms and thus accounts for
the shifting center of gravity due to the motion of the
manipulator. It is obtained from the gradient of the potential
energy by calculating

ḡ = ∇Epot = ∂Epot

∂ x̄
. (50)

An alternative to those equations is presented in [28],
where the system’s mass matrix M and lumped Coriolis
vector h̄ are obtained from the system’s total kinetic energy
by calculating

M = ∂

∂ ˙̄x
(

∂Ekin

∂ ˙̄x
)

, (51)

h̄ = ∂

∂ x̄

(
∂Ekin

∂ ˙̄x
)

˙̄x − ∂Ekin

∂ x̄
. (52)

The vector h̄ is equal to C ˙̄x.

3.3 Force Mapping

The term f̄x in Eq. 43 is given in terms of forces along
the generalized coordinates. In many situations, it is very
convenient to have a mapping from local body forces to
generalized forces. This mapping greatly facilitates the
application of the forces and torques originating from the
propulsion system of the AM.

By the choice of the generalized coordinates, the torques
applied to the AM have to be specified along the four
coordinates of the quaternion. The principle of virtual work
is used to establish a relationship between the quaternion
torques and the Cartesian torques along the body-fixed axis.

The principle of virtual work states that the work δW

is equal to the force f̄ acting on a body along its virtual
displacement δs̄:

δW = f̄ · δs̄. (53)

In a completely analogous manner, the work performed by
the torque L0 f̄q acting on the rotation δϕ̄=n̄δϕ is defined as

δWq = L0 f̄q · n̄δϕ. (54)

Following the approach in [42] stating that for small
changes in rotations (i.e.

∥
∥qδ

∥
∥ = 1), the following

approximation holds:

q + δq ≈ q ⊗ qδ, (55)

where δq is a small variation and qδ is a small change of
rotation from q. Left multiplying both sides of that relation
with q∗ yields:
(
1, 0̄

)+ q∗ ⊗ δq ≈ qδ . (56)

Using the axis angle relation Eq. A.8, qδ , under considera-
tion of small angles, can be approximated as

qδ ≈
(
1,

1

2
n̄δϕ

)
. (57)

Thus, Eqs. 57 in 56 results in

2
(
q∗ ⊗ δq

) ≈ (0, n̄δϕ) . (58)

Writing Eq. 54 as the dot product of two pure quaternions

δWq ≈ (
0, L0 f̄q

) · (0, n̄δϕ) , (59)

and by inserting Eq. 58 the relation

δWq ≈ (
0, L0 f̄q

) · 2 (q∗ ⊗ δq
)

(60)

is obtained. Using Eq. 7 yields

δWq ≈ 2L0 f̄q · Gδq. (61)

With the help of the dot product property x̄ · Aȳ = Aᵀx̄ · ȳ,
Eq. 61 becomes

δWq ≈ 2GᵀL0 f̄q · δq, (62)

wherein 2Gᵀ can be identified as the mapping between
Cartesian torques in body frame and the generalized
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quaternion torques. The forces along the body fixed axis can
be mapped to the generalized forces with
Wf̄xyz = WRL0

L0 f̄xyz. (63)

The mapping of joint torques to generalized joint forces is
trivial:
Wf̄J = 1NJ

L0 f̄J. (64)

The results Eqs. 62, 63 and 64 are summarized in
the following block diagonal force mapping matrix MF ,
mapping from body forces to generalized forces f̄x :

MF = blockdiag
(WRL0, 2G

ᵀ, 1NJ

)
, (65)

such that the generalized forces in Eq. 43 can be written as

f̄x = MF f̄B, (66)

with L0 f̄B being the body forces composed by the forces
L0 f̄xyz and torques L0 f̄q in resp. about the local x, y and z

body axis and the joint torques L0 f̄J. Those forces typically
originate from the propulsion system but can also include
aerodynamic effects if so desired. The body force vector is
thus defined by
L0 f̄B = [

L0 f̄xyz
L0 f̄q

L0 f̄J
]
. (67)

3.4 Propulsion Forces

The body forces Eq. 67 are defined as a function of the
thrust of the AM’s propulsion system. Given a UAV with
NM propulsion devices, then the forces from the propulsion
system acting on the body of the AM are obtained from the
following relations

L0 f̄xyz =
NM∑

i

L0 f̄thrust,i (68a)

L0 f̄q =
NM∑

i

L0 f̄rot,i =
NM∑

i

(
L0 r̄L0M,i × L0 f̄thrust,i + L0 f̄drag,i

)
. (68b)

Therein f̄thrust,i designates the thrust force vector and
f̄drag,i the drag vector (reaction torque). The vector L0 r̄L0M,i
designates the lever formed between the UAV’s body and
the motor frame (see Fig. 4). The mapping matrix Mmot ,
also commonly referred to as efficiency resp. allocation
matrix (used by the mixer in many controllers), contains the
contribution of each motor to each force resp. torque along
each body axis. It is constant (unless the motors themselves
can tilt) and defined by

Mmot = blockdiag
([

L0 f̄thrust,1, . . . ,
L0 f̄thrust,NM

]
,
[
L0 f̄rot,1, . . . ,

L0 f̄rot,NM

]
, 1N

)
(69)

and can be used to map body forces to motor forces.
Both quantities are a function of the angular velocity ωMi

of the propeller [43] as in (see Fig. 1)

L0 f̄thrust,i = L0 n̄Miktω
2
Mi, (70a)

L0 f̄drag,i = L0 n̄MikpsMiω
2
Mi, (70b)

where L0 n̄M,i is the motor’s normalized axis of rotation.
The constants kt and kp for thrust and drag can be identified
experimentally. Furthermore, since ωMi is rarely known
and only very few ESCs provide telemetry resp. accept
inputs as RPM references, Eqs. 70a, 70b, can also be
written as a function of the flight controller’s output PWM
signal uM,i = [0, 1], which yields the roughly linear
relationship [43, 44]:

L0 f̄thrust,i ≈ L0 n̄Mi k̂t uMi , (71a)
L0 f̄drag,i ≈ L0 n̄Mi k̂psMiuMi, (71b)

where sM,i = {1, −1}, for CW resp. CCW, designates the
spin direction of the motor. Notice that for tilting propeller
configurations, the normal vector L0 n̄Mi would be a function
of the tilt angles commanded to the tilting mechanism.

A real motor cannot instantaneously change its velocity,
therefore it is common practice to model the motor
dynamics as a first-order system [44]:

G (s) = K

1 + T s
, (72)

where K is the maximum RPM and T is the time constant
of the motor-propeller system.

Fig. 4 The propulsion system. The thrust force along the motor-spin
normal and the associated drag of the propeller generate a net force
acting on L0
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Robotic joints are generally more complex and have a
non-negligible amount of friction and damping due to their
internal mechanics. Their modeling highly depends on their
internals and thus has to be seen on a case-by-case basis.
For the sake of simplicity, the model in Eq. 72 is also used
for the robotic joints throughout this work.

4 Simulation & Constraints

The numeric simulation of the AM is a very helpful, or
even critical step before deploying an AM in practice.
Furthermore, there are applications in deep reinforcement
learning, where the model needs to be simulated such that
the controller can be learnt from the model dynamics [18].
The required equations for numerical simulation, respecting
the holonomic constraints are derived herein.

The system dynamics Eq. 43 can be written in form of
the differential algebraic equation (DAE) [25]

{
M ¨̄x + C ˙̄x + ḡ − q̄F − λJφ̄ = 0̄, (73)

φ̄ = 0̄, (74)

where φ̄ are the holonomic constraints imposed on the
system, Jφ̄ designates the Jacobian matrix of φ̄ and λ is a
Lagrange multiplier. The constraint vector contains (at least)
the unity constraint originating from the unit quaternion:

φ̄ (x̄) = [‖q‖ − 1] . (75)

The system equation can be used for numerical
simulation by solving Eq. 43 for ¨̄x and implementing it as
first order ODEs:

˙̄z =
{ ˙̄x = v̄, (76)

˙̄v = ā, (77)

wherein ā = ¨̄x marks the unconstrained acceleration:

ā = M−1 [f̄x − C ˙̄x − ḡ
]
. (78)

Naturally, such a system would not be constrained to the
manifold defined by the constraint φ̄ = 0, violating the
unit length assumption of the quaternion, thus degrading
the physical fidelity of the system up to a point where it is
completely disjoint from reality. It is therefore mandatory
to constrain the system such that the unit length assumption
holds. Generally, this can be seen as a holonomic constraint
problem, which is typically addressed by Lagrangian
multipliers within the Lagrangian framework.

Herein, we opted for a general-purpose solution to this
holonomic constraints problem as discussed in [37, 45] and
[46], in the spirit that it provides additional value e.g. in
a reinforcement learning context, where it might be useful
to temporarily stiffen the joints to speed up the training
process. The formulation is however fairly heavy and the
authors of [25, 47] specifically addressed the problem of the

quaternion unit constraint and provided a numerically faster
method. The general idea behind those methods is however
the same and consists of performing small corrective actions
orthogonal to the manifolds defined by the constraints, for
both, the system’s velocities and positions. The authors of
[38] showed how to calculate lagrangian multiplier directly.
However, this requires splitting the system into translational
and rotational parts, which is unfeasible here due to the
coupled nature of the system.

According to [46], the holonomic constraint is enforced
onto the system by constraining the accelerations and veloc-
ities, which are obtained by the sum of the unconstrained
acceleration ā resp. velocity v̄ and a corrective term. The
system respecting the holonomic constraints is thus given by

˙̄zφ̄ =
⎧
⎨

⎩

˙̄x = v̄ + M−1/2B+ (b̄q − A ˙̄v − φ̄/dt
)
, (79a)

˙̄v = ā + M−1/2B+ (b̄v−Aā − ˙̄φ/dt
)

, (79b)

where (.)+ designates the Moore-Penrose ‘pseudo’ inverse.
The remaining terms are computed as

A = ∂φ̄

∂ x̄
∈ R

Nφ×Nx , (80a)

B = AM−1/2 ∈ R
Nφ×Nx , (80b)

b̄q = − d

dt
φ̄ ∈ R

Nφ , (80c)

b̄v = −˙̄xᵀ
(

∂2φ̄

∂ x̄2

)
˙̄x − 2

∂2φ̄

∂t∂ x̄
˙̄x − d2φ̄

dt2
∈ R

Nφ , (80d)

where Nx is the number of states of the system and Nφ the
number of constraints imposed onto the system.

Integrating this system using common numerical integra-
tion methods (e.g. RK4) results in a small error that occurs
after each integration step, caused by the fact that S3 is not
closed for addition

(
q + qδ /∈ S3

)
. The authors of [48] have

shown how this error accumulates and alters the dynamics
of the system. In practice, however, the error is relatively
small under the condition that the time steps are sufficiently
small, in which case Eq. 55 holds. Furthermore, it is not
required to re-normalize the quaternion after each iteration,
since the constraint drives the unity error to zero.

5 Validation

In the following section, the physical fidelity of the obtained
constrained system model Eq. 79, is validated.

5.1 Methodology

Correctness of the model is shown by comparing the
evolution of a dynamics simulation of an AM with a 1-DOF
manipulator (see Fig. 5 using the constrained first order
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Fig. 5 Physical properties of the Lagrange-model and the corre-
sponding configuration of the quadcopter with a 1 DOF manipulator
(rotating about its local y-axis) used for the validation test. The range

of motion of the manipulator is indicated by the red dots. The present
manipulator configuration corresponds to θ̄ = [45◦]

system Eq. 79 and comparing them with the simulation
as performed by the Bullet physics engine [49] using the
same URDF model in both cases. The Bullet simulation is
therefore the reference model, called the Bullet model. For
clarity, the model corresponding to Eq. 79 is referred to as
the Lagrange model.

The simulation in both cases is performed at a fixed time
step of 240Hz. The simulation of the Lagrange model is
using the Euler forward (first order) integration scheme,
Bullet physics uses the semi-implicit Euler method. As far
as possible, equal condition have been established for both
simulations (e.g. the default linear and angular damping in
Bullet has been turned off for this test).

A short dynamics simulation of the modeled AM is car-
ried out, during which positions, velocities, and propulsion
forces are recorded. Given the inherently unstable nature of
the AM, it is stabilized via a stabilizing (sliding mode) con-
troller similar to [20] around the equilibrium point. During
the simulation, the first (and only) joint θ1 is driven towards
the commanded reference position, following the pattern
shown in Fig. 6 (top). The movement of that joint is thus act-
ing as a disturbance onto the closed-loop system and stres-
ses the various terms in Eq. 43. Caused by the accumulation
of small errors at each simulation step, the two systems de-
viate from each other eventually. Furthermore, the same con-
trol input no longer stabilize both systems. This limits the
time interval over which the dynamics of both systems are
comparable. Here, this interval was identified to be around 4s.

The recorded forces applied to the Lagrangian-model via
the propulsion devices are then copied to the Bullet-model,

which is thus pseudo-open loop. If both models are suffi-
ciently close, the exact same forces should stabilize both models
(within a reasonable time span). The joint torques on the
other hand are not transferred due to numerical stability con-
cerns, but since the joint is following the same trajectory,
the generated disturbance is the same in both cases. There
fore, the Bullet-model tracks the joint velocity and position
of the Lagrange-model via Bullet’s built-in joint position
control algorithm. The process is depicted in Fig. 7.

The hypothesis is thus, if both systems have the same in-
trinsic dynamics, the time response of both systems will be
the same, resp. very close. Nonetheless, the two systems
will diverge eventually due to the accumulation of small
errors over time e.g. caused by numerical inaccuracies,
fundamental architectural differences, and different integra-
tion schemes.

Lastly, by performing a ‘backflip’ maneuver during
which the simulated AM, momentarily, points straight up
resp. down, we can verify that our proposed model remains
consistent where the model using Euler angles [20] fails
due to gimbal lock [24]. To that end, the aforementioned 1-
link AM is commanded to flip about its local y-axis, thus
pitching the platform by more than 90◦.

5.2 Results

The actuation of the first joint following the commanded
pattern as shown in Fig. 6 (top), is creating a disturbance
on the system. The manipulator moves in xz-plane (Fig. 5),
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Fig. 6 Joint positions (top) and
the error on all remaining axis
(center) of the AM. The absolute
quaternion unity error
abs(‖q‖ − 1) (bottom) is driven
to zero by the holonomic
constraint
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with the reaction torque acting on the y-axis (pitch) and the
Coriolis force pushing the vehicle in X resp. Z direction.
The resulting motion is shown in Figs. 8 and 6.

The resulting velocities along the main axis of the
disturbance are shown in Fig. 8a. The reaction torque
creates a net torque around the y-axis, causing the system

Fig. 7 The validation scenario.
The model simulated using the
model developed inhere (left),
transfers the propulsion forces
and joint trajectories to the
(physically) identical model
simulated with Bullet (right).
The two models are identical if
they evolve dynamically close
over a time t

74   Page 12 of 21



J Intell Robot Syst (2022) 105: 74

Fig. 8 Validation results

to accelerate, and turn about the y-axis. The same applies
to the velocities in X and Z caused by the Coriolis forces
initiated by the circular motion of the moving mass (the link
here). The corresponding positions are shown in Fig. 8b.
Noticeably, is that the evolution of both models is extremely
close, however, as can be seen in Fig. 8a (center), small
errors do sum up and thus both systems deviate from
each other eventually. As the states of both models deviate
eventually, the control input can no longer stabilize both
systems. A comparison thus only makes sense over a short
interval (4s).

The yaw and roll position discrepancies are shown in
Fig. 6. Since the manipulator passes during its movement
straight through the center of mass (in xz-plane), there
should be no rotation about roll, which is the case here as
it is measuring close to zero. The same reasoning applies to
the yaw axis, except that also the propeller drag comes into
play here. In y-direction, the AM also exhibits a net-zero
movement as the manipulator moves in xz-plane.

The absolute quaternion unity error is shown in Fig. 6
(bottom). Since this is the fundamental assumption made
at the start, it must deviate from unity as little as possible.
The maximum error measured here was only 2.9×−6

indicating that the holonomic constraint solver pushes the
quaternion norm to stay close to unity. It can also be seen
that re-normalizing the quaternion after each iteration is
unnecessary.

It can thus be concluded that our model is true to the
reference model as simulated by the Bullet realtime physics
engine (Fig. 8).

Lastly, a backflip maneuver pitching the AM by more than
90◦ is shown in Fig. 9. The results show that the Euler model
fails close to the south pole (90◦ mark) as it enters a gimbal
lock condition, where the movement becomes unpredictable
as the transformation matrix tying Euler rates to angular
velocities becomes rank deficient. Consequently, the system
states become ‘NaN’ - terminating the simulation. Our quater-
nion model has no such limitations and remains consistent.
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Euler model fails-1
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Fig. 9 Quaternion parameterization avoids the singularities inherent
to Euler parameterization. Here, the UAV is commanded to pitch
(backflip), which drives the Euler model into gimbal lock as it
approaches a pitch angle of 90◦ close to the south pole, ultimately
causing the motion to become unpredictable. The two trajectories
represent the vehicle’s x-axis plotted on a unit-sphere. The sudden
jump on the Euler trajectory (green) is caused by gimbal lock

6 Control

This section briefly demonstrates an application of the
developed model in a control context applied to an AM

consisting of quadcopter carrying a 2-DOF serial link
manipulator. Furthermore, investigations are performed to
analyze the realtime applicability of the control scheme with
increasingly complex AM systems.

6.1 Computed Torque Control

The controller is largely based on the computed torque
controller presented in [19] and depicted in Fig. 10. The
controller makes use of the model for feedback linearization
and is, at its core, a PD controller with bias terms (known
disturbances). This very simple structure was deliberately
chosen for the subsequent tests as it does not hide model
imperfections, contrary to the various state-of-the-art robust
control schemes, which are largely preferable for real world
applications. Nonetheless, they also make heavy use of a
dynamics model such as presented in this work.

Given the non-linear AM system

M ¨̄x + C ˙̄x + ḡ = τ̄ , (81)

by deliberately choosing the control input

τ̄ = Mν̄ + C ˙̄x + ḡ (82)

that cancels the nonlinearities via the bias term C ˙̄x + ḡ, the
following system is obtained by inserting (82) in (81):

¨̄x = ν̄. (83)

Fig. 10 Block diagram of the computed torque controller in the con-
text of our dynamics framework. The controller’s output, mapped to
motor forces, is fed into the PyBullet simulation where it is applied to
the simulated model of the AM in terms of local forces f̄mot at their
corresponding locations. The positions and velocities of the simulated

model are then fed back into the controller. The system matrices of
the AM are generated by our dynamics framework based on a URDF
description which also serves as the blueprint for the model inside
PyBullet
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Using a PD-feedback law, the virtual control input ν̄ can be
defined by

ν̄ = MF

( ¨̄xd + Kv
˙̄ex + Kp ēx

)
, (84)

which, by inserting (84) in (83) yields the linear error
dynamics

MF

(¨̄ex + Kv
˙̄ex + Kp ēx

) = 0̄, (85)

which is stable and guaranteed to converge by the right
choice of the gain matrices Kv and Kp according to linear
control theory. The mapping matrix MF (65) maps the
pseudo-forces of the controller into generalized coordinates.

The positional error vector ē is defined as

ē =
⎡

⎣

Wp̄WL0 ,ref
− Wp̄WL0

q̄v,err

θ̄ ref − θ̄

⎤

⎦ , (86)

where q̄v,err is the vector part of the error quaternion
defined as qerr = q∗ ⊗ qref .

The velocity error is given by

˙̄e =
⎡

⎢
⎣

W ˙̄pWL0 ,ref
− W ˙̄pWL0

Bω̄B
B,ref − Bω̄B

B˙̄θ ref − ˙̄θ

⎤

⎥
⎦ . (87)

The acceleration error term ¨̄e is not used as ¨̄x is difficult to
obtain in practice (in good quality), thus ¨̄e = 0̄.

Lastly, the body forces to be applied by the controller are
obtained by calculating

f̄b = M+
F τ̄ , (88)

which can easily be mapped to motor forces using the
mapping matrix (69):

f̄mot = M+
mot f̄b. (89)

The motor forces can then further be mapped to RPM via
relation (70).

It is clear that, on a real AM, the system matrices are
often based on estimations resp. approximations and do
thus not exactly cancel the system’s nonlinearities, which
will degrades the performance of the controller. A common
approach is thus to rely on the robustness of the controller
(e.g. [7]) or to make it adapt to miscalculated mechanical
properties as shown in [20].

6.2 Tests andMethodology

A quadcopter equipped with a planar 2-DOF manipulator
featuring two revolute joints is modeled in URDF and
loaded into the realtime physics simulation Bullet. The
motor and joint forces are modeled as a first order system
Eq. 72 and applied locally as external forces resp. torques
to the simulated body calculated with Eq. 67. The system
matrices (M, C, ḡ) are generated from the same URDF
description and exported to C code for performance reasons
resp. to achieve close to bare metal performance for the
subsequent performance benchmarks. The simulation and
the controller are implemented in Python, making use of
PyBullet for the realtime physics simulation, numpy for the
linear algebra and cython to wrap and utilize the generated
code. The overall structure is as depicted in Fig. 10.

Fig. 11 Physical properties and configuration of the controlled quadcopter equipped with a 2-DOF manipulator. The range of motion is indicated
by the red dots. The present manipulator configuration corresponds to θ̄ = [45◦, −45◦]
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The properties and the configuration of the AM is shown
in Fig. 11, the gains of the controller were hand-tuned and
read

Kv = diag (0, 0, 10, 5, 5, 4, 24, 24) ,

Kp = diag (0, 0, 30, 40, 40, 30, 60, 120) .

The first two coefficients are zero for the velocity resp.
position in x and y due to the lack of direct control authority
over those quantities.

Two different tests are carried out. The first one analyzes
the tracking performance of the computed torque controller
in simulation over an interval of 20s, performing several
maneuvers whilst actuating the joints. The movement of the
manipulator is a significant disturbance to the controlled
system. Also, since the controller is in fact just a PD
controller with a bias term, inconsistencies between the
simulated model and the generated dynamics model would
inevitably lead to an unstable system.

The second test is a series of benchmarks dealing with
the realtime capability of the controller. The benchmarks are
carried out on two different platforms that are representative
for on-board resp. off-board control scenario. Herein, an
AMD Ryzen 1600X is used as a typical ground station,
whilst a Raspberry Pi 4 was picked as a low-cost, low-
power platform commonly used as a companion computer
on drones to perform more substantial onboard calculations.
Several AM systems from zero to 3 links were generated
and analyzed. Prior to counting the number of operations
on the left-hand side of Eq. 43 via SymPy’s ‘count ops’
function, the expression is simplified with the ‘expand’
function. This operation is very costly but necessary to be
able to get comparable results. For that reason, a maximum
of 3 links was chosen for this test (no limitations are
imposed by the framework itself). The generated C code
is compiled with the LLVM Clang compiler using the
flags ‘-O1 -ffast-math -fno-math-errno’. The code is using
the double-precision floating point format. The choice of
using ‘-O1’ (minimal optimizations) on the generated C
code is motivated by the huge size of the generated code
files (up to several megabytes). Performing only minimal
optimizations helps with compile times and memory
consumption during compilation. Tests with ‘-O2’ only
showed marginal improvements in terms of performance.
All of the C++ code involving expensive linear algebra is
compiled with standard release flags (i.e. ‘-O3’). For this
series of tests, we got rid of all Python code and replaced
the numpy functionality with Eigen, thus performing our
benchmarks on a ‘pure’ C/C++ codebase.

The average time for one iteration of inverse dynamics
Eq. 79 and forward dynamics Eq. 81 was measured
and averaged over several runs. The inverse dynamics is
important for simulation, the forward dynamics is what

is fed into the controller in terms of known disturbances.
The main difference between the two is the additional
computational cost associated with the calculation of the
inverse mass matrix and the constraint solver which comes
into play for the inverse dynamics.

Lastly, we compare the number of operations of
the dynamics equation of a two-link AM using Euler
and quaternion parameterization. Furthermore, we test
different methods to obtain the dynamics equation from
the general Lagrange equations. More precisely: 1. The
energy formulation from [28], Eqs. 51, 52, which results in
a lumped Coriolis force vector. 2. The factorization method
used herein, involving the Christoffel symbols, Eqs. 47, 48.
3. A mix of the two methods, which also yields a lumped
expression for the Coriolis term, Eqs. 47, 52.

6.3 Results

The results of the simulation over a duration of 20s have
been plotted in Fig. 12. Reference trajectories (position
and velocity) have been generated for the joint angles,
the altitude, roll, pitch and yaw angles and fed to the
controller. Notice that the controller tracks the reference
quaternion obtained from the roll, pitch and yaw angles.
For convenience, those angles have also been plotted by
converting the attitude quaternion back to roll, pitch and
yaw.

The results in Fig. 12 show stable and satisfactory
performance, indicating that the nonlinearities of the system
are well compensated by the bias term. The steady state
error in z direction between 8.5s and 10s is introduced by
the pitch angle of the UAV, which leads to a loss in thrust in
z-direction. This behavior is expected from a PD-controller
(as is the care here). A robust control scheme can be used to
fix this problem, or, in this case here, a simple addition of an
integral term to the virtual control input would be sufficient.

Furthermore, as can be seen from Figs. 11 resp. 5, the
time constants of the system have been tuned down from
0.2s to 0.1s for the propulsion resp to 0.05s for the joints.
The time constants greatly impact the performance of the
controller as they severely degrade its ability to cancel the
nonlinearities via the bias term. The point could be made
that AM systems with more, but smaller propellers (thus
with a smaller time constant) are preferable over systems
with fewer, but larger propellers.

The benchmark results concerning the computational
time and realtime performance on the two model platforms
(AMD Ryzen 1600X and Raspberry Pi 4) are shown in
Table 2. The results indicate that for the desktop CPU,
the number of calculations hardly poses any problem with
an average of just 66μs per inverse dynamics iteration for
a very typical UAV equipped with a 2-DOF manipulator,
which then grows exponentially, reaching an average of
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Fig. 12 Simulation results of the computed torque controller applied to a PyBullet-simulated 2-link AM. Measured and reference signal for the
position in z, the roll, pitch and yaw angles as well as the joint angles θ1 and θ2

731μs for a UAV with a 3-DOF manipulator with a total of
almost 6.6 million arithmetic operations. As expected, the
forward dynamics are slightly faster (by the lack of inverse
matrix calculations), peaking at 706μs per iteration.

The Raspberry performs noticeably worse, reaching up
to 4.93ms per inverse dynamics iteration in the 3-DOF
scenario and only slightly better at 4.89ms per forward
dynamics iteration. Whether or not this is acceptable
for realtime control heavily depends on the application.
Typically, the inner loop of commercial autopilots runs at
500Hz, which would limit the Raspberry Pi to a 2-link
configuration.

From Table 3 it becomes clear that the computational cost
increase from choosing quaternion parameterization over
Euler angles is substantial. Across the board, the number

of operations roughly doubled passing from Euler angles to
quaternion parameterization. This is at least partially due
to the larger state space and thus all system matrices being
enlarged by 1 over the Euler model. The numbers also show
that the method itself has a big impact on the complexity
of the resulting dynamics expression. We achieved the
best results with the “mixed”-method, Eqs. 47, 52 for
the quaternion model. The “energy”-method, Eqs. 51, 52,
delivered the best results for the Euler model. In all cases,
a lumped expression for the Coriolis forces is preferable.
Calculating the Christoffel symbols, Eqs. 47, 48, always
resulted in the largest expression. The presented methods
are also vastly different in terms of the time it takes for the
model to generate. Here, the mixed method was the fastest
in all cases, while the energy method was the slowest. This

Table 2 Computational performance and number of arithmetic operations of several configurations on two typical compute platforms using
Eqs. 47, 48

Ryzen 1600X Raspberry Pi 4

Configuration Operations Inv. dynamics Forw. dynamics Inv. dynamics Forw. dynamics

UAV 5911 2μs 0.6μs 10μs 2μs

UAV+1 Links 130328 11μs 9μs 60μs 46μs

UAV+2 Links 1.041.911 66μs 63μs 1031μs 991μs

UAV+3 Links 6549828 731μs 706μs 4925μs 4886μs
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Table 3 Comparison of the computational cost for quaternion and Euler angle parameterized models for a 2-link AM. Christoffel method uses
Eqs. 47, 48, energy method uses Eqs. 51, 52 and the mixed method uses Eqs. 47, 52

Model Method Lumped Operations Rel. Difference Abs. Difference Gen. Time

Quaternion Christoffel no 1.041.911 baseline baseline 760s

Energy yes 701721 -32.7% -32.7% 1146s

Mixed yes 698908 -32.9% -32.9% 613s

Euler Christoffel no 516078 baseline -50.5% 284s

Mixed yes 349888 -32.2% -66.4% 215s

Energy yes 192813 -62.6% -81.5% 312s

can be attributed to the number of derivatives calculations
involved in that method.

7 Conclusion

The kinematic equations for the multi-body system formed
by an AM (i.e. UAV and a serial link manipulator attached
thereto), have been derived starting with a general URDF
description of the system. The complete closed-form, singu-
larity-free dynamics of an AM has been derived in detail
via the Euler-Lagrange equations using quaternion parame-
trization for the rotational degrees of freedom of the floating
base. The dynamics equations of the system were then
factorized into the canonical form for mechanical systems.

The obtained dynamics model was numerically validated
against its counterpart (simulated by the Bullet physics
engine), showing adequate performance over a reasonable
time span. The results also show that the unity constraint
of the quaternion stays satisfied over the course of the
simulation by enforcing it via a general-purpose holonomic
constraint solver.

The relation between the generalized forces and the body
forces has been established whilst proving detailed insights
on how those forces are calculated resp. modeled within an
AM context.

And lastly, as an application, the stabilization of an
AM using a computed torque controller making use of
the developed dynamics model was shown, indicating
satisfactory tracking performance in most cases. A robust
control approach is however necessary to compensate for
the loss of vertical thrust due to the inclination of the flying
platform. Our data shows that, although the complexity of
the closed-form solution grows exponentially, the proposed
solution is generally fast enough for realtime applications
of typical 2-link AM systems on low-power embedded
platforms. Our results also show that the computational
cost increase of our quaternion model compared to the
common Euler model is quite substantial. The selected
method to extract the dynamics equations from the general

Lagrange equations shows to have a significant impact on
the complexity of the resulting expression.

The current implementation makes use of a general-
purpose holonomic constraint solver to keep the quaternion
at unit length, which currently prevents it from being used
in a model predictive control framework. Future work will
deal with this issue by eliminating the unity constraint and
thus the need for the constraint solver.

Appendix A: Quaternion Fundamentals

This appendix briefly introduces quaternions with the
focus on unit quaternions, which play a fundamental
role in representing singularity-free orientations in three-
dimensional space. Its most relevant aspects are summarized
here. For further details the reader is referred to [38, 42, 50]
and [51].

A quaternion is an expression defined by a set of four
coefficients qw, qx, qy, qz ∈ R, and three symbols i, j, k,

q = qw + qxi + qyj + qzk ∈ H, (A.1)

which can be put in the more convenient form of

q = (qw, q̄v) ∈ H, (A.2)

where qw ∈ R is the scalar part and q̄v = (
qi, qj , qk

) ∈
R
3 is the vector part containing the three imaginary

coefficients.
The quaternion group H is endowed with the non-

commutative quaternion product defined as

q⊗p = (
qwpw − q̄ᵀv · p̄v, qwp̄v + pwq̄v + q̄v × p̄v

)
. (A.3)

The norm of a quaternion is defined as

‖q‖ =
√

q2
w + q̄ᵀv q̄v. (A.4)

In the context of mechanics, quaternions describe both a
(uniform) scaling and a rotation [38]. A quaternion q with
‖q‖ = 1, element of S3, is called a unit quaternion,
parameterizing a 4-dimensional unit-sphere, and, contrary
to a general quaternion in H, solemnly describe the
orientation of a rigid body. S3 is a double cover of SO(3)
meaning that q and −q characterize the same orientation.
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The inverse of a quaternion is defined as

q−1 = 1

‖q‖2 (qw, −q̄v) . (A.5)

The conjugate of a quaternion is obtained by negating its
vector part

q∗ = (qw, −q̄v) , (A.6)

and is equal to the inverse in case ‖q‖ = 1.
The quaternion identity rotation is defined as

1 = q ⊗ q∗ = (
1, 0̄

)
,q ∈ S3. (A.7)

Unit quaternions can directly be obtained from axis-angle
notation (the equivalent of the Euler notation in quaternion
space) s.t.:

eūθ =
(
cos

θ

2
, ū sin

θ

2

)
, (A.8)

where ū represents the (normalized) axis of rotation and θ

the angle of rotation.
A quaternion is called pure, if its scalar part is zero:

q = (0, q̄v) ∈ Hp
∼= R

4. (A.9)

A vector ū ∈ R
3 defined in body frame can be rotated

into the world frame by q ∈ S3 using the double quaternion
product:
(
0, ū′) = q ⊗ (0, ū) ⊗ q∗ ∈ Hp. (A.10)

The vectors ū and ū′ have the same magnitude if and only if
‖q‖ = 1. Otherwise, the length of ū is scaled by the norm
of q.

Composition of two quaternions q1,q2 ∈ S3 is similar to
the composition of rotation matrices:

q12 = q1 ⊗ q2. (A.11)

The quaternion product is linear and as such it can be
expressed as a matrix-vector product:

q12 = q1 ⊗ q2 (A.12)

= [q1]L q2 (A.13)

= [q2]R q1, (A.14)

with the operators

[q]L = qw14 +
[
0 −q̄ᵀv
q̄v [q̄v]×

]
(A.15)

and

[q]R = qw14 +
[
0 −q̄ᵀv
q̄v − [q̄v]×

]
, (A.16)

wherein [.]× : R3 → R
3×3 is the cross product operator

[ā]× =
⎡

⎣
0 −az ay

az 0 −ax

−ay ax 0

⎤

⎦ . (A.17)

Applying Eqs. A.15 and A.16 to A.10 yields the rotation of
a vector in matrix notation:
[
0
ū′
]

= [q]L
[
q∗]

R

[
0
ū

]
(A.18)

The matrix equivalent of Eq. A.8 is given by the Rodrigues
rotation formula R (θ, ū) : R × R

3 → SO(3), which
represents a rotation of an angle θ around an arbitrary axis
‖u and is define as

R (θ, ū) = 13 + sin θ [ū]× + (1 − cos θ) [ū]2× . (A.19)

Within this work, the quaternion is always assumed to be
unit length.
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