d'Ambrosio, Conchita ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
Vögele, Claus ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
External co-authors :
no
Language :
English
Title :
Measuring COVID-19 Vaccine Hesitancy: Consistency of Social Media with Surveys
Publication date :
12 October 2022
Event name :
13th International Conference on Social Informatics
Event date :
from 19-10-2022 to 21-10-2022
Audience :
International
Journal title :
Proceedings of the 2022 International Conference on Social Informatics
Pages :
196–210
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
FnR Project :
FNR12252781 - Data-driven Computational Modelling And Applications, 2017 (01/09/2018-28/02/2025) - Andreas Zilian
Akoglu, H.: User’s guide to correlation coefficients. Turk. J. Emerg. Med. 18(3), 91–93 (2018)
Alfatease, A., Alqahtani, A.M., Orayj, K., Alshahrani, S.M.: The impact of social media on the acceptance of the COVID-19 vaccine: a cross-sectional study from Saudi Arabia. Patient Prefer. Adherence 15, 2673–2681 (2021)
Amaya, A., Bach, R., Kreuter, F., Keusch, F.: Measuring the Strength of Attitudes in Social Media Data, chap. 5, pp. 163–192. John Wiley & Sons Ltd. (2020)
Baker, R.: Big Data, chap. 3, pp. 47–69. John Wiley & Sons Ltd. (2017)
Bi, D., Kong, J., Zhang, X., Yang, J.: Analysis on health information acquisition of social network users by opinion mining: case analysis based on the discussion on COVID-19 vaccinations. J. Healthc. Eng. 2021, 2122095 (2021)
Bollen, J., Gonçalves, B., Ruan, G., Mao, H.: Happiness is assortative in online social networks. Artif. Life 17(3), 237–251 (2011)
Burger, R., et al.: Longitudinal changes in COVID-19 vaccination intent among South African adults: evidence from the NIDS-CRAM panel survey, February to May 2021. BMC Public Health 22(1), 1–10 (2022)
Cascini, F., et al.: Social media and attitudes towards COVID-19 vaccination: a systematic review of the literature. eClinicalMedicine 48, 101454 (2022)
Chen, N., Chen, X., Pang, J.: A multilingual dataset of COVID-19 vaccination attitudes on Twitter. Data Brief 44, article 108503 (2022)
Chen, N., Chen, X., Zhong, Z., Pang, J.: The burden of being a bridge: analysing subjective well-being of Twitter users during the COVID-19 pandemic. In: Proceedings 2022 European Conference on Machine Learning and 26th Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD). Lecture Notes in Computer Science. Springer (2022)
Chen, N., Chen, X., Zhong, Z., Pang, J.: “Double vaccinated, 5G boosted!”: learning attitudes towards COVID-19 vaccination from social media (2022). https://doi.org/10.48550/ARXIV.2206.13456
Davis, M.A., Zheng, K., Liu, Y., Levy, H.: Public response to obamacare on Twitter. J. Med. Internet Res. 19(5), e167 (2017)
Deville, J.C., Särndal, C.E., Sautory, O.: Generalized raking procedures in survey sampling. J. Am. Stat. Assoc. 88(423), 1013–1020 (1993)
Duong, V., Luo, J., Pham, P., Yang, T., Wang, Y.: The ivory tower lost: how college students respond differently than the general public to the COVID-19 pandemic. In: Proceedings of the 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 126–130. IEEE (2020)
Giorgi, S., et al.: Correcting sociodemographic selection biases for population prediction from social media. In: Proceedings of the 2022 International AAAI Conference on Web and Social Media (ICWSM), vol. 16(1), pp. 228–240 (2022)
Gori, D., et al.: Mis-tweeting communication: a vaccine hesitancy analysis among Twitter users in Italy. Acta Bio Medica: Atenei Parmensis 92(S6) (2021)
Hecht, B.J., Hong, L., Suh, B., Chi, E.H.: Tweets from Justin Bieber’s heart: the dynamics of the location field in user profiles. In: Proceedings of the 2011 International Conference on Human Factors in Computing Systems (CHI), pp. 237–246. ACM (2011)
Hou, Z., et al.: Assessing COVID-19 vaccine hesitancy, confidence, and public engagement: a global social listening study. J. Med. Internet Res. 23(6), e27632 (2021)
Hsieh, Y.P., Murphy, J.: Total Twitter Error, chap. 2, pp. 23–46. John Wiley & Sons Ltd. (2017)
Jaidka, K., Giorgi, S., Schwartz, H.A., Kern, M.L., Ungar, L.H., Eichstaedt, J.C.: Estimating geographic subjective well-being from Twitter: a comparison of dictionary and data-driven language methods. Proc. Natl. Acad. Sci. 117(19), 10165– 10171 (2020)
Leemann, L., Wasserfallen, F.: Extending the use and prediction precision of subnational public opinion estimation. Am. J. Polit. Sci. 61(4), 1003–1022 (2017)
Lyu, H., et al.: Social media study of public opinions on potential COVID-19 vaccines: informing dissent, disparities, and dissemination. Intell. Med. 2(1), 1–12 (2022)
Matz, S.C., Menges, J.I., Stillwell, D.J., Schwartz, H.A.: Predicting individual-level income from Facebook profiles. PLoS ONE 14(3), e0214369 (2019)
Nowak, S.A., Chen, C., Parker, A.M., Gidengil, C.A., Matthews, L.J.: Comparing covariation among vaccine hesitancy and broader beliefs within Twitter and survey data. PLOS ONE 15(10), 1–16 (2020)
Nyawa, S., Tchuente, D., Fosso-Wamba, S.: COVID-19 vaccine hesitancy: a social media analysis using deep learning. Ann. Oper. Res. 16, 1–39 (2022)
Ou, X., Li, H.: Ynu oxz @ haspeede 2 and AMI: XLM-RoBERTa with ordered neurons LSTM for classification task at EVALITA 2020. In: Proceedings of the 2020 Evaluation Campaign of Natural Language Processing and Speech Tools for Italian (EVALITA), vol. 2765. CEUR-WS.org (2020)
Piedrahita-Valdés, H., et al.: Vaccine hesitancy on social media: sentiment analysis from June 2011 to April 2019. Vaccines 9(1), 28 (2021)
Puri, N., Coomes, E.A., Haghbayan, H., Gunaratne, K.: Social media and vaccine hesitancy: new updates for the era of COVID-19 and globalized infectious diseases. Huamn Vacc. Immunotherapeut. 16(11), 2586–2593 (2020)
Reveilhac, M., Steinmetz, S., Morselli, D.: A systematic literature review of how and whether social media data can complement traditional survey data to study public opinion. Multimedia Tools Appl. 81(7), 10107–10142 (2022). https://doi. org/10.1007/s11042-022-12101-0
Ribeiro, F.N., Benevenuto, F., Zagheni, E.: How biased is the population of Facebook users? Comparing the demographics of Facebook users with census data to generate correction factors. In: Proceedings of the 2020 ACM Conference on Web Science (WebSci), pp. 325–334. ACM (2020)
Scarborough, W.J.: Feminist Twitter and gender attitudes: opportunities and limitations to using Twitter in the study of public opinion. Socius 4, 2378023118780760 (2018)
Schober, M.F., Pasek, J., Guggenheim, L., Lampe, C., Conrad, F.G.: Social media analyses for social measurement. Public Opin. Q. 80(1), 180–211 (2016)
Shaaban, R., Ghazy, R.M., Elsherif, F., et al.: COVID-19 vaccine acceptance among social media users: a content analysis, multi-continent study. Int. J. Environ. Res. Public Health 19(9), 5737 (2022)
van Vliet, L., Törnberg, P., Uitermark, J.: The Twitter parliamentarian database: analyzing Twitter politics across 26 countries. PLoS ONE 15(9), e0237073 (2020)
Wang, Z., et al.: Demographic inference and representative population estimates from multilingual social media data. In: Proceedings of the 2019 World Wide Web Conference (WWW), pp. 2056–2067. ACM (2019)
Wilson, S.L., Wiysonge, C.: Social media and vaccine hesitancy. BMJ Global Health 5(10), e004206 (2020)
Xiao, Z., Song, W., Xu, H., Ren, Z., Sun, Y.: TIMME: Twitter ideology-detection via multi-task multi-relational embedding. In: Proceedings of the 2020 ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pp. 2258–2268. ACM (2020)
Zhang, C., Xu, S., Li, Z., Liu, G., Dai, D., Dong, C., et al.: The evolution and disparities of online attitudes toward COVID-19 vaccines: year-long longitudinal and cross-sectional study. J. Med. Internet Res. 24(1), e32394 (2022)
Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily in graph neural networks: current limitations and effective designs. In: Proceedings of the 2020 Annual Conference on Neural Information Processing Systems (NeurIPS), vol. 33, pp. 7793–7804. NeurIPS (2020)