Thermodynamics of concentration vs flux control in chemical reaction networks

;

2022 • In *J. Chem. Phys., 156* (1), p. 014116

Peer reviewed

126_22AvanziniEspositoJCP.pdf

Publisher postprint (5.05 MB)

All documents in ORBilu are protected by a user license.

copy to clipboard copied

Disciplines :

Chemistry

Avanzini, Francesco ^{}; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)

Esposito, Massimiliano ^{} ^{}; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)

External co-authors :

yes

Language :

English

Title :

Thermodynamics of concentration vs flux control in chemical reaction networks

Publication date :

2022

Journal title :

J. Chem. Phys.

ISSN :

0021-9606

Publisher :

American Institute of Physics

Volume :

156

Issue :

1

Pages :

014116

Peer reviewed :

Peer reviewed

Available on ORBilu :

since 16 December 2022

Scopus citations^{®}

10

Scopus citations^{®}

without self-citations

without self-citations

3

OpenCitations

2

WoS citations^{™}

8

- K. Sekimoto, Stochastic Energetics, Lecture Notes in Physics (Springer-Verlag, Berlin, Heidelberg, 2010).
- C. Jarzynski, "Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale," Annu. Rev. Condens. Matter Phys. 2, 329-351 (2011). 10.1146/annurev-conmatphys-062910-140506
- U. Seifert, "Stochastic thermodynamics, fluctuation theorems and molecular machines," Rep. Prog. Phys. 75, 126001 (2012). 10.1088/0034-4885/75/12/126001
- C. Van den Broeck and M. Esposito, "Ensemble and trajectory thermodynamics: A brief introduction," Physica A 418, 6-16 (2015). 10.1016/j.physa.2014.04.035
- P. Gaspard, "Fluctuation theorem for nonequilibrium reactions," J. Chem. Phys. 120, 8898-8905 (2004). 10.1063/1.1688758
- T. Schmiedl and U. Seifert, "Stochastic thermodynamics of chemical reaction networks," J. Chem. Phys. 126, 044101 (2007). 10.1063/1.2428297
- R. Rao and M. Esposito, "Conservation laws and work fluctuation relations in chemical reaction networks," J. Chem. Phys. 149, 245101 (2018). 10.1063/1.5042253
- H. Qian and D. A. Beard, "Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium," Biophys. Chem. 114, 213-220 (2005). 10.1016/j.bpc.2004.12.001
- M. Polettini and M. Esposito, "Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws," J. Chem. Phys. 141, 024117 (2014). 10.1063/1.4886396
- R. Rao and M. Esposito, "Nonequilibrium thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics," Phys. Rev. X 6, 041064 (2016). 10.1103/physrevx.6.041064
- H. Ge and H. Qian, "Nonequilibrium thermodynamic formalism of nonlinear chemical reaction systems with Waage-Guldberg's law of mass action," Chem. Phys. 472, 241-248 (2016). 10.1016/j.chemphys.2016.03.026
- H. Ge and H. Qian, "Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory," Phys. Rev. E 94, 052150 (2016). 10.1103/PhysRevE.94.052150
- T. G. Kurtz, "Solutions of ordinary differential equations as limits of pure jump Markov processes," J. Appl. Probab. 7, 49-58 (1970). 10.1017/s0021900200026929
- T. G. Kurtz, "Limit theorems for sequences of jump Markov processes approximating ordinary differential processes," J. Appl. Probab. 8, 344-356 (1971). 10.1017/s002190020003535x
- T. G. Kurtz, "The relationship between stochastic and deterministic models for chemical reactions," J. Chem. Phys. 57, 2976-2978 (1972). 10.1063/1.1678692
- J. H. Fritz, B. Nguyen, and U. Seifert, "Stochastic thermodynamics of chemical reactions coupled to finite reservoirs: A case study for the Brusselator," J. Chem. Phys. 152, 235101 (2020). 10.1063/5.0006115
- G. Falasco, R. Rao, and M. Esposito, "Information thermodynamics of Turing patterns," Phys. Rev. Lett. 121, 108301 (2018). 10.1103/physrevlett.121.108301
- F. Avanzini, G. Falasco, and M. Esposito, "Thermodynamics of chemical waves," J. Chem. Phys. 151, 234103 (2019). 10.1063/1.5126528
- D. Andrieux and P. Gaspard, "Nonequilibrium generation of information in copolymerization processes," Proc. Natl. Acad. Sci. U. S. A. 105, 9516-9521 (2008). 10.1073/pnas.0802049105
- A. Blokhuis and D. Lacoste, "Length and sequence relaxation of copolymers under recombination reactions," J. Chem. Phys. 147, 094905 (2017). 10.1063/1.5001021
- P. Gaspard, "Template-directed growth of copolymers," Chaos 30, 043114 (2020). 10.1063/1.5145100
- R. Rao, D. Lacoste, and M. Esposito, "Glucans monomer-exchange dynamics as an open chemical network," J. Chem. Phys. 143, 244903 (2015). 10.1063/1.4938009
- K. Yoshimura and S. Ito, "Information geometric inequalities of chemical thermodynamics," Phys. Rev. Res. 3, 013175 (2021). 10.1103/physrevresearch.3.013175
- K. Yoshimura and S. Ito, "Thermodynamic uncertainty relation and thermodynamic speed limit in deterministic chemical reaction networks," Phys. Rev. Lett. 127, 160601 (2021). 10.1103/physrevlett.127.160601
- F. Avanzini, E. Penocchio, G. Falasco, and M. Esposito, "Nonequilibrium thermodynamics of non-ideal chemical reaction networks," J. Chem. Phys. 154, 094114 (2021). 10.1063/5.0041225
- G. Magnus and J. Keizer, "Minimal model of beta-cell mitochondrial Ca2+handling," Am. J. Physiol.: Cell Physiol. 273, C717-C733 (1997). 10.1152/ajpcell.1997.273.2.c717
- G. Magnus and J. Keizer, "Model of β-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables," Am. J. Physiol.: Cell Physiol. 274, C1158-C1173 (1998). 10.1152/ajpcell.1998.274.4.c1158
- C. P. Fall and J. E. Keizer, "Mitochondrial modulation of intracellular Ca2+signaling," J. Theor. Biol. 210, 151-165 (2001). 10.1006/jtbi.2000.2292
- R. Aris, Elementary Chemical Reactor Analysis (Dover, 1989).
- U. von Stockar, Biothermodynamics: The Role of Thermodynamics in Biochemical Engineering (EPFL Press, 2013).
- G. Craciun and M. Feinberg, "Multiple equilibria in complex chemical reaction networks: I. The injectivity property," SIAM J. Appl. Math. 65, 1526-1546 (2005). 10.1137/s0036139904440278
- A. Blokhuis, D. Lacoste, and P. Gaspard, "Reaction kinetics in open reactors and serial transfers between closed reactors," J. Chem. Phys. 148, 144902 (2018). 10.1063/1.5022697
- G. Laurent, D. Lacoste, and P. Gaspard, "Emergence of homochirality in large molecular systems," Proc. Natl. Acad. Sci. U. S. A. 118, e2012741118 (2021). 10.1073/pnas.2012741118
- G. Laurent, P. Gaspard, and D. Lacoste, "A robust transition to homochirality in complex chemical reaction networks," arXiv:2107.14634 [cond-mat.stat-mech] (2021).
- D. Hochberg and J. M. Ribó, "Thermodynamic evolution theorem for chemical reactions," Phys. Rev. Res. 2, 043367 (2020). 10.1103/physrevresearch.2.043367
- H. Qian and D. A. Beard, "Metabolic futile cycles and their functions: A systems analysis of energy and control," IEE Proc.: Syst. Biol. 153, 192-200 (2006). 10.1049/ip-syb:20050086
- G. Svehla, "Nomenclature of kinetic methods of analysis (IUPAC recommendations 1993)," Pure Appl. Chem. 65, 2291 (1993). 10.1351/pac199365102291
- G. Falasco, T. Cossetto, E. Penocchio, and M. Esposito, "Negative differential response in chemical reactions," New J. Phys. 21, 073005 (2019). 10.1088/1367-2630/ab28be
- R. Rao and M. Esposito, "Conservation laws shape dissipation," New J. Phys. 20, 023007 (2018). 10.1088/1367-2630/aaa15f
- D. F. Anderson, "Boundedness of trajectories for weakly reversible, single linkage class reaction systems," J. Math. Chem. 49, 2275 (2011). 10.1007/s10910-011-9886-4
- D. F. Anderson, "A proof of the global attractor conjecture in the single linkage class case," SIAM J. Appl. Math. 71, 1487-1508 (2011). 10.1137/11082631x