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ABSTRACT
We investigate the thermodynamic implications of two control mechanisms of open chemical reaction networks. The first controls the con-
centrations of the species that are exchanged with the surroundings, while the other controls the exchange fluxes. We show that the two
mechanisms can be mapped one into the other and that the thermodynamic theories usually developed in the framework of concentration
control can be applied to flux control as well. This implies that the thermodynamic potential and the fundamental forces driving chemical
reaction networks out of equilibrium can be identified in the same way for both mechanisms. By analyzing the dynamics and thermodynamics
of a simple enzymatic model, we also show that while the two mechanisms are equivalent at steady state, the flux control may lead to
fundamentally different regimes where systems achieve stationary growth.
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I. INTRODUCTION

Stochastic thermodynamics1–4 provides a rigorous ground
to characterize the energetics of systems driven arbitrarily far
from equilibrium. It has been formulated for open chemical reac-
tion networks (CRNs) undergoing stochastic5–7 or deterministic
dynamics.8–10 Crucially, the latter formulation is equivalent to the
former in the macroscopic limit,7,10–12 where fluctuations become
negligible and the stochastic dynamics converges to the determinis-
tic one,13–15 and to Gibbs’ chemical thermodynamics at equilibrium.
In these frameworks, CRNs are driven out of equilibrium by the
exchanges of some chemical species with the surroundings, which
are, in general, represented in terms of infinitely large (but also
finite16) reservoirs, called chemostats, controlling the concentrations
of the exchanged species. This theory has been used to quantify
the energetic cost for creating patterns17 and waves18 and sustain-
ing the growth process of macromolecules, such as copolymers19–21

and biomolecules.22 Its connections to information geometry,23 as
well as to thermodynamic uncertainty relations and speed limits,24

have been recently investigated. Furthermore, the topological prop-
erties of CRNs and, in particular, the conservation laws, have been
exploited to decompose the entropy production rate in such a way
as to identify the proper thermodynamic potential of open CRNs as

well as the fundamental forces and chemostats breaking the detailed
balance condition and driving CRNs out of equilibrium.7,25

Controlling the concentrations of some species via chemostats
is not the only way the surroundings can affect CRNs. They can
also control the exchange fluxes. For instance, if the mitochon-
drial metabolism is analyzed as an open CRN, its surroundings
correspond to the cytosolic processes which do not control the con-
centrations of some species inside the mitochondrion, but instead
they determine its exchange fluxes.26–28 Furthermore, in industrial
continuous-flow stirred tank reactors29 as well as in biotechnologi-
cal continuous cultures,30 systems are fed by reactants at a constant
rate while some other species are continuously extracted with a
controlled outflow. Hence, recent studies started considering flux
control mechanisms to drive CRNs out of equilibrium rather than
concentration control via chemostats. Some of these studies focused
on continuous-flow stirred tank reactors which have been analyzed
from a kinetic31 as well as a thermodynamic32 standpoint. This
formulation has, for example, been used to study the emergence
of homochirality33,34 and reformulate the thermodynamic evolu-
tion theorem in modern terms.35 Other studies considered CRNs
under both concentration and flux control and investigated how the
sensitivity of CRNs to changes in the extraction fluxes can be
adjusted by nonequilibrium futile cycles.36
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In this work, we provide a systematic comparison between open
CRNs under concentration control and flux control from a ther-
modynamic standpoint. We focus on deterministic CRNs whose
dynamical description is summarized in Sec. II. In Sec. III, we dis-
cuss concentration control and its thermodynamic characterization,
in particular, the decomposition of the entropy production rate
in terms of the thermodynamic potential and fundamental forces.
We turn to flux control in Sec. IV where we show that it can
be mapped into a specific protocol of concentration control. This
proves that the same thermodynamic theories developed for CRNs
under concentration control can be used for CRNs under flux con-
trol, including the decomposition of the entropy production rate. In
Sec. V, we investigate the different thermodynamic properties of the
two control mechanisms by considering a model system of an enzy-
matic reaction. We focus on how the entropy production rate, the
thermodynamic potential, and the work done by the fundamental
forces evolve depending on the control mechanism. General conclu-
sions are drawn in Sec. VI where we also discuss the implications
of our results which should be particularly relevant to charac-
terize the energetics of different growth regimes in autocatalytic
systems.

II. DYNAMICS OF OPEN CRNs
CRNs are considered here as ideal dilute solutions composed of

chemical species α = (. . . , α, . . .)⊺, which interconvert via chemical
reactions. In the macroscopic limit, the evolution of the abun-
dances of the chemical species, expressed in terms of concentrations
z = (. . . , [α], . . .)⊺, follows a deterministic rate equation,

d
dt

z = Sj + I. (1)

The first term on the rhs of Eq. (1), i.e., Sj, accounts for the
variation of the concentrations due to the chemical reactions. Each
column Sρ of the stoichiometric matrix S encodes the net variations
in terms of number of molecules of each species undergoing (the
elementary37) reaction ρ,

(2)

where ν+ρ (respectively, ν−ρ) is the vector of the stoichiometric
coefficients of the forward (respectively, backward) reaction. Thus,
Sρ = ν−ρ − ν+ρ. Each entry jρ of the vector j = (. . . , jρ, . . . )⊺ spec-
ifies the net current of every reaction ρ as the difference between
the forward and backward one, i.e., jρ = j

+ρ − j
−ρ, which satisfy

mass-action kinetics,

j±ρ = k±ρzν±ρ, (3)

with k±ρ being the kinetic constants of the forward/backward
reaction and ab

=∏ia
bi
i .

The second term on the rhs of Eq. (1) is the exchange vector
I = (. . . , Iα, . . . )⊺ accounting for the net matter flux of each species
between the CRN and the surroundings independently of the control
mechanism. It vanishes if CRNs are closed. In open CRNs, we split
the chemical species into the internal species α ∈ X, namely, those
that are not exchanged (i.e., Iα = 0), and the exchanged species α ∈ Y .

By applying the same splitting to the concentration vector z = (x, y)
and the stoichiometric matrix,

S =
⎛
⎜
⎝

SX

SY

⎞
⎟
⎠

, (4)

the rate equation (1) can be specialized as

d
dt

x = SXj, (5)

d
dt

y = SY j + IY , (6)

with IY
= (. . . , Iα, . . . )⊺α∈Y collecting all the non-null entries of I.

Closed CRNs must be detailed balanced, namely, an equilib-
rium steady state zeq such that j(zeq) = 0 always exists. In open
CRNs, the detailed balanced condition can be broken because of the
exchanges of the chemical species.

III. CONCENTRATION CONTROL
A first way in which the matter exchanges with the surround-

ings can affect the dynamics of CRNs is by controlling the concen-
trations of the Y species. Thus, y ceases to be dynamical variables,
unlike the concentrations of the internal species x, and become
externally controlled parameters, while Eq. (6) becomes merely a
definition of the exchange fluxes IY .

We specialize this concentration control in two classes. The first
one maintains the concentrations y constant, i.e., dy/dt = 0, and the
corresponding exchange fluxes are given by

IY
= −SY j. (7)

In this case, CRNs are said to be autonomous since the control
parameters y have fixed values. The second one forces the concentra-
tions y to follow a specific protocol, i.e., y = π, and the corresponding
exchange fluxes must satisfy

IY
=

d
dt

π − SY j. (8)

In this case, CRNs are said to be nonautonomous.
The concentration control is the most common one in the

framework of nonequilibrium thermodynamics. Physically, it corre-
sponds to coupling a CRN with external reservoirs called chemostats
as in Fig. 1. Each chemostat exchanges a specific Y species according
to the following process:

(9)

which is assumed to always be at equilibrium. From a thermody-
namic standpoint, this implies that the chemical potential μα of each
α ∈ Y species, namely, its contribution to the free energy, is con-
trolled by the chemostat, i.e., μα = μαc . The chemical potentials are
given by

μα = μ○α + RT ln[α], (10)
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FIG. 1. Pictorial illustration of the CRN (26) when subjected to (autonomous)
concentration control via chemostats fixing the concentrations of F, S, W, and P.

where μ○α is the standard chemical potential of the species α, R is the
gas constant, and T is the temperature fixed by the solvent. Conse-
quently, the chemostats control the concentrations of the Y species,

[α] = exp(
μαc − μ○α

RT
) ∀α ∈ Y , (11)

which are said to be chemostatted. Depending on whether the chem-
ical potentials μαc are constant in time or not, the concentrations y
have fixed values or not. Note that in previous studies,6,9,38 the Y
species are directly regarded as chemostats within the CRN. These
two interpretations are formally equivalent, but the former has the
advantage of being easier to compare to the flux control as we will
see.

Within this framework, the entropy production rate of elemen-
tary reactions,

Σ̇ = R∑
ρ
( j+ρ − j−ρ) ln

j+ρ

j−ρ
, (12)

has been decomposed7,25 as

TΣ̇ = −
d
dt

G + ẇnc + ẇdriv, (13)

where the semi-grand free energy G is the proper thermodynamic
potential of open CRNs, ẇnc is the nonconservative work rate
accounting for the energetic cost of breaking detailed balance, and
ẇdriv is the driving work rate quantifying the energetic cost of chang-
ing the equilibrium state to which CRNs would relax if they were
detailed balance.

The derivation of Eq. (13) is discussed in detail in Ref. 7 for
stochastic and in Ref. 25 for deterministic CRNs. Here, we recap
the general strategy, and we provide the explicit expressions of G,
ẇnc, and ẇdriv. To do so, we have to introduce the conservation laws
and the splitting of the chemostatted species Y into potential Yp and
force species Yf . The conservation laws9,10 are linearly independent
vectors {ℓλ

} in the cokernel of the stoichiometric matrix,

ℓλ
⋅ S = 0. (14)

Indeed, all the scalars Lλ
≡ ℓλ
⋅ z would be conserved quantities if

CRNs were closed, dL/dt = ℓλ
⋅ Sj = 0. These scalars (or their linear

combinations) quantify the concentrations of the so-called moieties,

i.e., parts of (or entire) molecules that remain intact in all the reac-
tions. Note that the total mass must be conserved in closed CRNs,
and thus, the set {ℓλ

} is never empty. In open CRNs, the set of con-
servation laws can be split into the unbroken conservation laws {ℓλu}

and the broken conservation laws {ℓλb}. The former are the largest
subset of conservation laws that can be written with null entries for
the Y species, i.e., ℓλu

α = 0 ∀α ∈ Y . The scalar quantities Lλu = ℓλu ⋅ z
are thus conserved even if CRNs are opened,

d
dt

Lλu = ℓλu ⋅ Sj
´¹¹¹¹¹¹¸¹¹¹¹¹¶
=0

+∑
α∈Y

ℓλu
α
¯
=0

Iα = 0. (15)

The latter are the other conservation laws, and the scalar quantities
Lλb = ℓλb ⋅ z are, in general, not conserved when CRNs are opened,
i.e.,

d
dt

Lλb = ℓλb ⋅ Sj
´¹¹¹¹¹¸¹¹¹¹¹¶
=0

+∑
α∈Y

ℓλb
α
¯
≠0

Iα ≠ 0, (16)

because the corresponding moieties are exchanged with the
chemostats. Note that the total mass is not conserved in open CRNs,
and thus, the set {ℓλb} is never empty.

Chemostatting a species does not always break a conservation
law.7,10,17,39 The potential species Yp are those that break the con-
servation laws when chemostatted, while the force species are the
other species Yf = Y/Yp. On the one hand, every time a Yp species
is chemostatted a new moiety is exchanged between the CRN and
the chemostats. The concentrations of the exchanged moieties are
expressed in terms of linear combinations40 of the broken conserved
quantities (16) according to

m = (Lb
Yp)
−1Lb, (17)

where Lb
= (. . . , Lλb , . . . )⊺ and Lb

Yp
is the (invertible) submatrix

for the Yp species of the matrix Lb whose rows are the broken con-
servation laws (i.e., Lb and Lb

Yp
have {ℓλb

α } and {ℓλb
α }α∈Yp as entries,

respectively). On the other hand, when a Yf species is chemostatted,
the corresponding chemostat exchanges a moiety with the CRN that
is already exchanged with another one, thus establishing a flux of a
moiety between two (or more) chemostats.41

The different role played by the Yp and Yf species provides a
rigorous ground to identify the thermodynamic potential of open
CRNs and to decompose the entropy production rate (13). As
in equilibrium thermodynamics when passing from the canoni-
cal to the grand canonical ensemble, the thermodynamic potential
G is obtained from the Gibbs free energy G by eliminating the
energetic contributions of the matter exchanged with the particle
reservoir that in this context corresponds to the chemostats. The lat-
ter accounts for the concentrations of the moieties (17) times the
chemical potential of the Yp species. Thus,

G = μ ⋅ z − RT∥z∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=G

− μYp
⋅m, (18)

with μ = (. . . , μα, . . . )⊺, μYp
= (. . . , μα, . . . )⊺α∈Yp

, and ∥z∥ =∑α[α].
Exploiting the conservation law, one can further verify that G is
lower bounded by its equilibrium value, i.e., G ≥ Geq.
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The nonconservative work rate,

ẇnc = FY f ⋅ I
Y f , (19)

quantifies the energetic cost of sustaining fluxes of moieties
between chemostats by means of the nonconservative force

FY f = (μY f
⋅ 𝟙 − μYp

⋅ (Lb
Yp
)
−1
Lb

Y f
)
⊺

(with Lb
Y f

being the submatrix

for the Yf species of Lb, i.e., the matrix with entries {ℓλb
α }α∈Y f , and

𝟙 being the identity matrix). When there are no Yf species, each
moiety is exchanged with a single Yp chemostat and there are
no fluxes between chemostats. Thus, ẇnc vanishes. If there are Yf
species, ẇnc can still vanish if

μY f
= (μYp

⋅ (Lb
Yp)
−1
Lb

Y f )
⊺

. (20)

The driving work rate,

ẇdriv = −(
d
dt

μYp
) ⋅m, (21)

accounts for the time dependent manipulation of the chemical
potentials of the moieties, and so of their concentrations, via the
Yp chemostats. Since the chemical potential of a species (10) is
univocally determined by its concentration, the driving work rate
obviously vanishes if dy/dt = 0, namely, under an autonomous
concentration control.

We consider now three simple cases to illustrate the physi-
cal meaning of the thermodynamic quantities given in Eqs. (18),
(19), and (21). First, when either no species are exchanged or
only the concentrations of the Yp species are maintained constant
by the chemostats, Eq. (13) simplifies to dG/dt = −TΣ̇ ≤ 0. This,
together with the lower bound G ≥ Geq, implies that the CRN even-
tually reaches an equilibrium state after a nonequilibrium transient
dynamics in which the semigrand free energy G is dissipated, i.e., it is
detailed balanced. The particular equilibrium state to which the CRN
relaxes depends on the concentrations of the Yp species. Second,
when the concentrations of the Yp species are driven, the CRN is still
detailed balanced, but the equilibrium state to which it would relax
changes in time. If the driving is fast enough, the CRN never reaches
equilibrium and is thus maintained in a nonequilibrium transient
dynamics. In this case, Eq. (13) becomes dG/dt = −TΣ̇ + ẇdriv and
ẇdriv accounts for the energetic cost of driving the equilibrium state.
For this reason, ẇdriv depends only on the Yp species. Third, when
the concentrations of the Yp species are maintained constant while
also the Yf species are exchanged, detailed balance is broken: the
CRN is maintained out of equilibrium both in the transient dynam-
ics and at steady state. Indeed, Eq. (13) becomes dG/dt = −TΣ̇ + ẇnc,
which implies that the dissipation cannot vanish at steady state since
TΣ̇ = ẇnc. Thus, ẇnc quantifies the energetic cost of breaking detailed
balance and FY f is the nonconservative force preventing the CRN
from reaching an equilibrium state.

IV. FLUX CONTROL
A second way in which the matter exchanges with the sur-

roundings can affect the dynamics of CRNs is by controlling the

exchange fluxes IY . The concentrations y are not controlled param-
eters, but they are still dynamical variables whose evolution follows
Eq. (6).

We can specialize this flux control in two classes. In the first
one, the exchange fluxes IY are either constant or depend on the
concentrations z. We refer to this regime as autonomous since the
control parameters IY are not externally manipulated. In the sec-
ond one, the exchange fluxes IY can be forced to follow an externally
imposed protocol. We refer to this regime as nonautonomous.

The flux control physically corresponds to coupling a CRN with
other external processes whose net effects on the concentrations of
the Y species are quantified by the exchange fluxes IY ,

(22)

where we used the symbol ↔ to represent the fact that exter-
nal processes can either inject or extract the species α ∈ Y . For
example, some species can be injected in the CRN at a cer-
tain constant rate and extracted with an outflow that is pro-
portional to their concentrations as in Fig. 2. This particular
strategy is equivalent to a continuous-flow stirred tank reactor
when applied to all the species.32 Furthermore, chemostatting can
be considered as particular external processes (9) that fix the
concentrations y.

It is natural to wonder whether the decomposition of the
entropy production rate (13) derived for CRNs coupled to
chemostats can still be applied to this different framework or not.
We argue here that it can be by mapping the flux control into a
nonautonomous concentration control.

Consider as first case a generic CRN where the exchange fluxes
IY

1 are controlled (here, we use the subscript 1 to stress that these are
the exchange fluxes of the first case). We do not make any assump-
tion on the expressions of the entries of IY

1 : they might be constant,
depend on the concentrations z, or follow an externally imposed
protocol. What matters is that the concentrations of the chemical
species at a generic time t,

z1 = (x1, y1), (23)

FIG. 2. Pictorial illustration of the CRN (26) when subjected to (autonomous) flux
control. The species S and F are continuously injected at the constant rates IS and
IF, respectively. The species P and W are extracted at concentration-dependent
rates IP = −kP[P] and IW = −kW[W], respectively.

J. Chem. Phys. 156, 014116 (2022); doi: 10.1063/5.0076134 156, 014116-4

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

are univocally determined by solving Eq. (1) [or equivalently Eqs. (5)
and (6)] for given expressions of IY

1 and a given initial condition
z0 = (x0, y0).

Consider as second case the same CRN with the same initial
condition, but where the concentrations of the Y species are con-
trolled. If the concentrations y2 follow an external protocol π2 which
is equivalent to their evolution in the first case, that is,

π2 = y1 ∀t, (24)

then also the evolution of the exchange fluxes IY
2 and the internal

concentrations will necessarily be the same for the whole dynamics,

IY
2 = IY

1 , x2 = x1, ∀t. (25)

This implies that the CRN cannot know whether it is subjected to
a concentration control or a flux control: it only experiences the
net effects of the coupling with the surroundings, i.e., the exchange
fluxes IY . Therefore, the free energy balance between the CRN and
the surroundings must be exactly the same in the two cases, and con-
sequently, the decomposition of the entropy production in Eq. (13)
still holds. The difference between the two ways of controlling CRNs
regards only their surroundings. In particular, we emphasize that
while chemostats are external reservoirs at equilibrium, the external
processes can be out of equilibrium.

Furthermore, the derivation7,25 of the semigrand free energy G,
the nonconservative work rate ẇnc, and the driving work rate ẇdriv
(summarized in Sec. III) is based only on which moieties (broken
conserved quantities) are exchanged with the surroundings. It does
not require any assumption on the kind of processes breaking the
conservation laws. Thus, G, ẇnc, and ẇdriv are given by Eqs. (18),
(19), and (21), respectively, whether CNRs are subjected to concen-
tration control or flux control, and their physical meaning is exactly
the same in both cases.

V. MODEL SYSTEM
We now consider the following CRN:

(26)

representing the active interconversion of the substrate S into the
product P catalyzed by the enzyme E and powered by the intercon-
version of the fuel F into the waste W. The species EF (respectively,
EW) is the complex enzyme-fuel (respectively, enzyme-waste), while
E∗ is the complex binding both the fuel and the substrate. Given the

stoichiometric matrix of the CRN (26),

(27)

we identify the conservation laws,

(28)

and the concentrations of the corresponding moieties, i.e., the
enzyme, the substrate, and the fuel moiety: LE

= [E] + [EF]
+ [EW] + [E∗], LS

= [E∗] + [P] + [S], and LF
= [EF] + [EW]

+ [E∗] + [W] + [F].
In the following, we examine how the different thermodynamic

quantities introduced in the decomposition of the entropy produc-
tion rate (13) change according to the control mechanism in some
prototypical cases. We use 1/k+3, k+3/k+1, and RT(k+3)

2
/k+1 as

units of measure for time, concentration, and thermodynamic quan-
tities, respectively. We assume that k±1 = k−2 = k±3 = k±4 = k±5 = 2,
k+2 = 2e, μ○E = μ○W = μ○S = 1, μ○EW = μ○P = μ○F = 2, μ○EF = 3, μ○E∗ = 4,
and the initial condition is given by [E] = 0.15, [EF] = 0.1,
[EW] = 0.1, [E∗] = 0.1, [P] = 0.5, [W] = 0.5, [S] = 1, [F] = 1. The
solution of the rate equation (1), where the currents satisfy mass-
action kinetics (3), has been numerically computed using the stan-
dard SciPy ordinary differential equation (ODE) solver and then
employed to determine the thermodynamic quantities using their
definitions.

A. Detailed balanced case
We start by considering the case where only the species

Y = {S, F} are exchanged with the surroundings. The conservation
laws ℓS and ℓF are broken, and consequently, (i) both the species S
and F are potential species Yp and (ii) the CRN is (unconditionally)
detailed balanced. According to Eq. (17), the concentrations of the
exchanged moieties are given by the concentrations of the substrate
and the fuel moiety,

m =
⎛
⎜
⎝

LS

LF

⎞
⎟
⎠

, (29)

since Lb
Yp

is the identity matrix in this particular case where Lb,
whose rows are the broken conservation laws, is specified by

(30)
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Thus, the semigrand free energy (18) is given by

G = G − μSLS
− μFLF, (31)

the driving work (21) is specified as

ẇdriv = −(
d
dt

μS)LS
− (

d
dt

μF)LF, (32)

while the nonconservative work (19) vanishes because there are no
Yf species.

By applying an autonomous concentration control on the Y
species, the CRN will eventually reach an equilibrium steady state.
In the transient, the exchange fluxes IS and IF balance the varia-
tion of the concentration [S] and [F] due to the chemical reactions
[see Fig. 3(a)]. When equilibrium is reached, all the reaction currents
vanish and hence also the exchange fluxes [see Eq. (7) and Fig. 3(a)].
From a thermodynamic standpoint, the dynamics corresponds to a
pure dissipation of the semigrand free energy as shown in Fig. 3(b).
Indeed, no driving work is performed, and Eq. (13) simplifies to
dG/dt = −TΣ̇ ≤ 0.

On the other hand, by imposing an autonomous flux con-
trol that continuously injects S and F in the CRN at constant
rate, namely, IS and IF have constant positive values, the con-
centrations [P], [W], [S], and [F] continuously grow as shown
in Fig. 3(c). The concentrations [E], [EF], [EW], and [E∗] are
instead bounded since the concentration of the enzyme moiety

LE is still conserved (in other words, ℓE is an unbroken con-
servation law). In this case, the dynamics never reaches a steady
state. From a thermodynamic standpoint, the control mecha-
nism performs a driving work which maintains the CRN out of
equilibrium [see Fig. 3(d)]. In the long time limit, the driving
work continuously extracts free energy at (almost) constant rate
(ẇdriv ≃ −0.08), which is provided by the constant decrease in the
semigrand free energy (dG/dt < ẇdriv < 0). In parallel, the dissipa-
tion is very small (0 < Σ̇≪ ∣dG/dt∣), which implies that the CRN
is constantly close to an equilibrium state that is changing in time
because of the driving work. Note that this is independent of the
magnitude of IS and IF. In the long time limit, the concentra-
tions of S and F are large enough that the exchange processes act
as a slow perturbation, thus allowing the CRN to stay close to
equilibrium.

B. Nondetailed balanced case
We consider now the case where also the species P and W are

exchanged, i.e., Y = {P, W, S, F}. Since no further conservation laws
are broken, namely, ℓE is still an unbroken conservation law, the
species P and W are force species Yf . Thus, the expressions of G and
ẇdriv are still the same as in Eqs. (31) and (32), respectively, while the
nonconservative work is now given by

ẇnc = (μP − μS)IP + (μW − μF)IW, (33)

FIG. 3. Exchange fluxes (a) and thermodynamic quantities (b) of the CRN (26) when the species S and F are subjected to an autonomous concentration control. Concen-
trations of P, W, S, and F (c) and thermodynamic quantities (d) of the CRN (26) when the species S and F are subjected to an autonomous flux control with IS = 0.025 and
IP = 0.05.
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since also the matrix Lb
Y f

is the identity matrix in this particular case
given Lb in Eq. (30).

When an autonomous concentration control maintains the
concentrations of the species F, S, W, and P constant (like in Fig. 1),
the CRN relaxes toward a nonequilibrium steady state. Indeed, the
CRN continuously exchanges the Y species with the surroundings
[see the fluxes IY in Fig. 4(a)]. At steady state, the species F (respec-
tively, S) is constantly injected into the CRN, i.e., IF > 0 (respectively,
IS > 0), while the species W (respectively, P) is constantly extracted
at the same rate, i.e., IW = −IF < 0 (respectively, IP = −IS < 0). This
physically means that the CRN operates as a steady state engine
interconverting F into W and S into P. From a thermodynamic
standpoint, the dynamics continuously dissipates (free) energy [see
Fig. 4(b)]. In the transient, the dissipated energy Σ̇ is provided by
the decrease in the semigrand free energy dG/dt < 0 and by the
nonconservative work ẇnc > 0. At steady state, the dissipation due
to the continuous interconversion of F into W and S into P is
solely balanced by the nonconservative work, i.e., Σ̇ = ẇnc, since the
semigrand free energy is constant, i.e., dG/dt = 0.

We now turn to the situation where an autonomous flux con-
trol is applied to the CRN. As in Fig. 2, we consider that the species S
and F are continuously injected in the CRN at constant rates IS and
IF, while the species P and W are extracted at rates that are propor-
tional to their concentrations, i.e., IP = −kP[P] and IW = −kW[W].
Depending on the injection fluxes IS and IF and the extraction rate
constants kP and kW, the dynamics can be significantly different as
shown in Fig. 4.

When, for example, IP = −0.05[P], IW = −0.1[W], IS = 0.025,
and IF = 0.05, the CRN relaxes toward a steady state like when the
concentration control is applied. At steady state, the extraction fluxes
of the species P and W balance exactly the injection fluxes of the
species S and F [Fig. 4(c)], IW = −IF and IP = −IS. The CRN oper-
ates again as a steady state engine interconverting F into W and S
into P. From a thermodynamic standpoint [see Fig. 4(d)], we iden-
tify three different regimes. For t < 1.7, the energy dissipated by
the dynamics Σ̇ is provided by the decrease in the semigrand free
energy dG/dt < 0 by the nonconservative work ẇnc > 0 and also by
the driving work ẇdriv > 0. For 1.7 < t < 26, the energy provided by
the nonconservative work and the driving work is greater than the
dissipation, ẇnc + ẇdriv − Σ̇ > 0, leading to an increase in the semi-
grand free energy dG/dt > 0. For t > 26, steady state is reached: the
driving work as well as the time derivative of the semigrand free
energy vanish and only the nonconservative work balances the dissi-
pation, i.e., Σ̇ = ẇnc, like in the case of concentration control. Thus,
the steady state dynamics and thermodynamics under flux control
(unlike the transient ones) are qualitatively the same as under con-
centration control. However, the specific steady state to which the
CRN relaxes depends on the control mechanism. This can be easily
verified by comparing the values of the exchange fluxes in Figs. 4(a)
and 4(c) as well as of the thermodynamic quantities in Figs. 4(b) and
4(d).

When, for example, IP = −1[P], IW = −2[W], IS = 1, and IF = 2,
the CRN never reaches steady state. The concentrations of S
and F continuously grow [Fig. 4(e)], while the concentrations of

FIG. 4. Exchange fluxes (a) and thermodynamic quantities (b) of the CRN (26) when the species P, W, S, and F are subjected to an autonomous concentration control.
Exchange fluxes (c) and thermodynamic quantities (d) of the CRN (26) when the species P, W, S, and F are subjected to an autonomous flux control with IP = −0.05[P],
IW = −0.1[W], IS = 0.025, and IF = 0.05. Concentrations of P, W, S, and F (e) and thermodynamic quantities (f) of the CRN (26) when the species P, W, S, and F are
subjected to an autonomous flux control with IP = −1[P], IW = −2[W], IS = 1, and IF = 2.
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P and W become constant and very small. This happens because
the species S and F are injected too quickly into the CRN to be
effectively interconverted into P and W and extracted: IF > −IW and
IS > −IP. Thus, they accumulate. From a thermodynamic standpoint
[see Fig. 4(f)], the dissipation continuously increases and it is mostly
balanced by the nonconservative work, i.e., Σ̇ ≃ ẇnc. On the other
hand, the driving work continuously extracts energy from the CRN,
which is provided by the decrease in the semigrand free energy,
i.e., ẇdriv ≃ dG/dt. This thermodynamic behavior is not specific to
the model: it is a direct consequence of the CRN being close to
a nonequilibrium steady state that changes in time. Indeed, in the
long time limit, the concentrations of S, F are large enough that the
exchange processes act as a perturbation, while the concentrations
P and W are almost constant. This implies that the entropy produc-
tion rate is (mostly) balanced by the non-conservative work (as if the
CRN was at steady state), while the energetic cost of changing the
steady state accounted by dG/dt is provided by the driving work. In
this regime, the dynamics and thermodynamics under flux control
are significantly different from those under concentration control.

VI. DISCUSSION
We discuss now the general differences between concentration

and flux control focusing, in particular, on the various contributions
to the entropy production rate (13). In the initial transient of the
dynamics, the flux control always leads to a time dependent varia-
tion of the concentrations of the exchanged species, which can be
obtained only with an nonautonomous concentration control. This
happens because the exchange fluxes do not balance the variation
to the concentrations due to the chemical reactions. Thus, part of
the free energy exchange between CRNs and the surroundings is
always given by a driving work contribution if the flux control is
applied. If CRNs are nondetailed balanced, another contribution
to the free energy exchange comes from the nonconservative work
independently of whether concentration control or flux control is
imposed.

In the long time limit, CRNs show (qualitatively) the same
phenomenology with both control mechanisms if a steady state is
reached: the dissipation is balanced by the nonconservative work,
i.e., Σ̇ = ẇnc. On the other hand, the relaxation toward a steady state
is not always granted under flux control. When this is the case, we
found that the variation to the semigrand free energy of CRNs is
(almost) balanced by the driving work, i.e., dG/dt ≃ ẇdriv, while the
dissipated free energy (in case of nondetailed balanced CRNs) is
(mostly) provided by the nonconservative work, i.e., Σ̇ ≃ ẇnc. This
is a consequence of the fact that CRNs evolve close to a steady state
which changes in time. If CRNs are detailed balanced, the entropy
production rate becomes very small compared to the absolute value
of the variation of the semigrand free energy, i.e., Σ̇≪ ∣dG/dt∣,
because CRNs evolve close to an equilibrium steady state.

Our results have been obtained for ideal dilute solutions, but
they can be easily generalized to non-ideal solutions by recogniz-
ing that the chemostats directly control the chemical potentials of
the exchanged species via the chemical reaction (9) instead of their
concentrations.25

Our work opens the way to the investigation of the ener-
getic cost of growth in autocatalytic processes. Using kinetic argu-
ments, mathematicians have proven that for a specific type of CRNs

(called single linkage class CRNs), continuous growth is prohibited
under concentration control.42,43 According to preliminary numer-
ical observations, our thermodynamic approach indicates that the
concentration control cannot provide enough energy to balance
both the dissipation and the increase in the semigrand free energy
due to continuous autocatalytic growth. However, we find that flux
control might maintain the CRN close to a nonequilibrium steady
state where the concentrations of the autocatalytic species con-
tinuously increase so powering continuous growth. We leave the
rigorous characterization of these numerical observations to future
studies.
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