Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Deep Learning-based Intra-slice Attack Detection for 5G-V2X Sliced Networks
BOUALOUACHE, Abdelwahab; Djaidja, Taki Eddine Toufik; Senouci, Sidi-Mohammed et al.
2022In 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring)
Peer reviewed
 

Documents


Texte intégral
_Final_CameraReady__Deep_Learning_based_Intra_slice_Attack_Detection_for_5G_V2X_Sliced_Networks.pdf
Postprint Éditeur (485.48 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
5G-V2X; Network Slicing; Security; Deep Learning; Intra-slice attack detection
Résumé :
[en] Connected and Automated Vehicles (CAVs) represent one of the main verticals of 5G to provide road safety, road traffic efficiency, and user convenience. As a key enabler of 5G, Network Slicing (NS) aims to create Vehicle-to-Everything (V2X) network slices with different network requirements on a shared and programmable physical infrastructure. However, NS has generated new network threats that might target CAVs leading to road hazards. More specifically, such attacks may target either the inner functioning of each V2X-NS (intra-slice) or break the NS isolation. In this paper, we aim to deal with the raised question of how to detect intra-slice V2X attacks. To do so, we leverage both Virtual Security as a Service (VSaS) concept and deep learning (DL) to deploy a set of DL-empowered security Virtual Network Functions (sVNFs) within V2X-NSs. These sVNFs are in charge of detecting such attacks, thanks to a DL model that we also build in this work. The proposed DL model is trained, validated, and tested using a publicly available dataset. The results show the efficiency and accuracy of our scheme to detect intra-slice V2X attacks.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
BOUALOUACHE, Abdelwahab ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Djaidja, Taki Eddine Toufik
Senouci, Sidi-Mohammed
Ghamri-Doudane, Yacine
ENGEL, Thomas ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Deep Learning-based Intra-slice Attack Detection for 5G-V2X Sliced Networks
Date de publication/diffusion :
25 août 2022
Nom de la manifestation :
2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring)
Date de la manifestation :
19-22 June 2022
Titre de l'ouvrage principal :
2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring)
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR14891397 - Intelligent Orchestrated Security And Privacy-aware Slicing For 5g And Beyond Vehicular Networks, 2020 (01/04/2021-31/03/2024) - Thomas Engel
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 08 décembre 2022

Statistiques


Nombre de vues
154 (dont 3 Unilu)
Nombre de téléchargements
339 (dont 3 Unilu)

citations Scopus®
 
7
citations Scopus®
sans auto-citations
5
citations OpenAlex
 
7

Bibliographie


Publications similaires



Contacter ORBilu