[en] Development of heart failure (HF) after myocardial infarction (MI) is responsible for premature death. Complex cellular and molecular mechanisms are involved in this process. A number of studies have linked the epitranscriptomic RNA modification N6-methyladenosine (m6A) with HF, but it remains unknown how m6A affects the risk of developing HF after MI. We addressed the regulation of m6A and its demethylase fat mass and obesity-associated (FTO) after MI and their association with HF. Using liquid chromatography coupled to mass spectrometry, we observed an increase of m6A content in the infarcted area of rat hearts subjected to coronary ligation and a decrease in blood. FTO expression measured by quantitative PCR was downregulated in the infarcted hearts. In whole blood samples collected at the time of reperfusion in MI patients, m6A content was lower in patients who developed HF as attested by a 4-month ejection fraction (EF) of ≤40 as compared to patients who did not develop HF (EF \textgreater 50\%). M6A content was higher in females. These results show that m6A measured in blood is associated with HF development after MI and motivate further investigation of the potential role of m6A as a novel epitranscriptomics biomarker and therapeutic target of HF.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Vausort, Mélanie
Niedolistek, Magdalena
Lumley, Andrew I.
Oknińska, Marta
Paterek, Aleksandra
Mączewski, Michał
DONG, Xiangyi ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Enzymology and Metabolism
Jäger, Christian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Scientific Central Services
LINSTER, Carole ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Enzymology and Metabolism
Leszek, Przemyslaw
DEVAUX, Yvan ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Regulation of N6-Methyladenosine after Myocardial Infarction
Date de publication/diffusion :
2022
Titre du périodique :
Cells
eISSN :
2073-4409
Maison d'édition :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Suisse
Timmis A. Townsend N. Gale C.P. Torbica A. Lettino M. Petersen S.E. Mossialos E.A. Maggioni A.P. Kazakiewicz D. May H.T. et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019 Eur. Heart J. 2020 41 12 85 10.1093/eurheartj/ehz859 31820000
Jenca D. Melenovsky V. Stehlik J. Stanek V. Kettner J. Kautzner J. Adamkova V. Wohlfahrt P. Heart failure after myocardial infarction: Incidence and predictors ESC Heart Fail. 2021 8 222 237 10.1002/ehf2.13144 33319509
Goretti E. Wagner D.R. Devaux Y. miRNAs as biomarkers of myocardial infarction: A step forward towards personalized medicine? Trends Mol. Med. 2014 20 716 725 10.1016/j.molmed.2014.10.006 25457620
Talwar S. Squire I.B. Downie P.F. McCullough A.M. Campton M.C. Davies J.E. Barnett D.B. Ng L.L. Profile of plasma N-terminal proBNP following acute myocardial infarction; correlation with left ventricular systolic dysfunction Eur. Heart J. 2000 21 1514 1521 10.1053/euhj.1999.2045 10973765
Fu Y. Dominissini D. Rechavi G. He C. Gene expression regulation mediated through reversible m(6)A RNA methylation Nat. Rev. Genet. 2014 15 293 306 10.1038/nrg3724
Frye M. Harada B.T. Behm M. He C. RNA modifications modulate gene expression during development Science 2018 361 1346 1349 10.1126/science.aau1646
Fang X. Li M. Yu T. Liu G. Wang J. Reversible N6-methyladenosine of RNA: The regulatory mechanisms on gene expression and implications in physiology and pathology Genes Dis. 2020 7 585 597 10.1016/j.gendis.2020.06.011
van der Kwast R. Quax P.H.A. Nossent A.Y. An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization Cells 2019 9 61 10.3390/cells9010061
Deng X. Su R. Weng H. Huang H. Li Z. Chen J. RNA N(6)-methyladenosine modification in cancers: Current status and perspectives Cell Res. 2018 28 507 517 10.1038/s41422-018-0034-6
Lan Q. Liu P.Y. Haase J. Bell J.L. Huttelmaier S. Liu T. The Critical Role of RNA m(6)A Methylation in Cancer Cancer Res. 2019 79 1285 1292 10.1158/0008-5472.CAN-18-2965
Chen X. Yu C. Guo M. Zheng X. Ali S. Huang H. Zhang L. Wang S. Huang Y. Qie S. et al. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death ACS Chem. Neurosci. 2019 10 2355 2363 10.1021/acschemneuro.8b00657 30835997
Han M. Liu Z. Xu Y. Liu X. Wang D. Li F. Wang Y. Bi J. Abnormality of m6A mRNA Methylation Is Involved in Alzheimer’s Disease Front. Neurosci. 2020 14 98 10.3389/fnins.2020.00098 32184705
Zhou W. Wang C. Chang J. Huang Y. Xue Q. Miao C. Wu P. RNA Methylations in Cardiovascular Diseases, Molecular Structure, Biological Functions and Regulatory Roles in Cardiovascular Diseases Front. Pharmacol. 2021 12 722728 10.3389/fphar.2021.722728
Devaux Y. Nossent A.Y. EU-CardioRNA COST Action CA17129 A role for m6A RNA methylation in heart failure development? Eur. J. Heart Fail. 2020 22 67 69 10.1002/ejhf.1714 31867852
Dorn L.E. Tual-Chalot S. Stellos K. Accornero F. RNA epigenetics and cardiovascular diseases J. Mol. Cell Cardiol. 2019 129 272 280 10.1016/j.yjmcc.2019.03.010 30880252
Desrosiers R. Friderici K. Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells Proc. Natl. Acad. Sci. USA 1974 71 3971 3975 10.1073/pnas.71.10.3971 4372599
Sweaad W.K. Stefanizzi F.M. Chamorro-Jorganes A. Devaux Y. Emanueli C. EU-CardioRNA COST Action CA17129 Relevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system J. Mol. Cell Cardiol. 2021 160 56 70 10.1016/j.yjmcc.2021.05.006
Huang H. Weng H. Chen J. m(6)A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer Cancer Cell 2020 37 270 288 10.1016/j.ccell.2020.02.004
Zhang C. Samanta D. Lu H. Bullen J.W. Zhang H. Chen I. He X. Semenza G.L. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA Proc. Natl. Acad. Sci. USA 2016 113 E2047 E2056 10.1073/pnas.1602883113
Mathlin J. Le Pera L. Colombo T. A Census and Categorization Method of Epitranscriptomic Marks Int. J. Mol. Sci. 2020 21 4684 10.3390/ijms21134684
He P.C. He C. m(6)A RNA methylation: From mechanisms to therapeutic potential EMBO J. 2021 40 e105977 10.15252/embj.2020105977 33470439
Berulava T. Buchholz E. Elerdashvili V. Pena T. Islam M.R. Lbik D. Mohamed B.A. Renner A. von Lewinski D. Sacherer M. et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation Eur. J. Heart Fail. 2020 22 54 66 10.1002/ejhf.1672 31849158
Hinger S.A. Wei J. Dorn L.E. Whitson B.A. Janssen P.M.L. He C. Accornero F. Remodeling of the m(6)A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy J. Mol. Cell Cardiol. 2021 151 46 55 10.1016/j.yjmcc.2020.11.002 33188779
Mathiyalagan P. Adamiak M. Mayourian J. Sassi Y. Liang Y. Agarwal N. Jha D. Zhang S. Kohlbrenner E. Chepurko E. et al. FTO-Dependent N(6)-Methyladenosine Regulates Cardiac Function During Remodeling and Repair Circulation 2019 139 518 532 10.1161/CIRCULATIONAHA.118.033794 29997116
Shi X. Cao Y. Zhang X. Gu C. Liang F. Xue J. Ni H.W. Wang Z. Li Y. Wang X. et al. Comprehensive Analysis of N6-Methyladenosine RNA Methylation Regulators Expression Identify Distinct Molecular Subtypes of Myocardial Infarction Front. Cell Dev. Biol. 2021 9 756483 10.3389/fcell.2021.756483
Zhang B. Xu Y. Cui X. Jiang H. Luo W. Weng X. Wang Y. Zhao Y. Sun A. Ge J. Alteration of m6A RNA Methylation in Heart Failure with Preserved Ejection Fraction Front. Cardiovasc. Med. 2021 8 647806 10.3389/fcvm.2021.647806
Paterek A. Kepska M. Kolodziejczyk J. Leszek P. Mackiewicz U. Maczewski M. Acute Heart Rate-Dependent Hemodynamic Function of the Heart in the Post-Myocardial Infarction Rat Model: Change Over Time Can. J. Cardiol. 2018 34 1341 1349 10.1016/j.cjca.2018.08.009
Paterek A. Kepska M. Sochanowicz B. Chajduk E. Kolodziejczyk J. Polkowska-Motrenko H. Kruszewski M. Leszek P. Mackiewicz U. Maczewski M. Beneficial effects of intravenous iron therapy in a rat model of heart failure with preserved systemic iron status but depleted intracellular cardiac stores Sci. Rep. 2018 8 15758 10.1038/s41598-018-33277-2
Wagner D.R. Devaux Y. Collignon O. Door-to-Balloon Time and Mortality N. Engl. J. Med. 2014 370 178 182 10.1056/NEJMc1313113
Uchida S. Hara K. Kobayashi A. Funato H. Hobara T. Otsuki K. Yamagata H. McEwen B.S. Watanabe Y. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents J. Neurosci. 2010 30 15007 15018 10.1523/JNEUROSCI.1436-10.2010
Paramasivam A. Priyadharsini J.V. m6A RNA methylation in heart development, regeneration and disease Hypertens. Res. 2021 44 1236 1237 10.1038/s41440-021-00696-0 34253882
Dubey P.K. Patil M. Singh S. Dubey S. Ahuja P. Verma S.K. Krishnamurthy P. Increased m6A-RNA methylation and FTO suppression is associated with myocardial inflammation and dysfunction during endotoxemia in mice Mol. Cell Biochem. 2021 477 129 141 10.1007/s11010-021-04267-2 34581943
Ju W. Liu K. Ouyang S. Liu Z. He F. Wu J. Changes in N6-Methyladenosine Modification Modulate Diabetic Cardiomyopathy by Reducing Myocardial Fibrosis and Myocyte Hypertrophy Front. Cell Dev. Biol. 2021 9 702579 10.3389/fcell.2021.702579 34368154
Shen W. Li H. Su H. Chen K. Yan J. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt Mol. Cell Biochem. 2021 476 2171 2179 10.1007/s11010-021-04069-6 33548009
Wiener D. Schwartz S. The epitranscriptome beyond m(6)A Nat. Rev. Genet. 2021 22 119 131 10.1038/s41576-020-00295-8
Jia G. Fu Y. Zhao X. Dai Q. Zheng G. Yang Y. Yi C. Lindahl T. Pan T. Yang Y.G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO Nat. Chem. Biol. 2011 7 885 887 10.1038/nchembio.687
Wang H. Hu X. Huang M. Liu J. Gu Y. Ma L. Zhou Q. Cao X. Mettl3-mediated mRNA m(6)A methylation promotes dendritic cell activation Nat. Commun. 2019 10 1898 10.1038/s41467-019-09903-6
Alarcon C.R. Lee H. Goodarzi H. Halberg N. Tavazoie S.F. N6-methyladenosine marks primary microRNAs for processing Nature 2015 519 482 485 10.1038/nature14281
van den Homberg D.A.L. van der Kwast R. Quax P.H.A. Nossent A.Y. N-6-Methyladenosine in Vasoactive microRNAs during Hypoxia; A Novel Role for METTL4 Int. J. Mol. Sci. 2022 23 1057 10.3390/ijms23031057
Ge L. Zhang N. Chen Z. Song J. Wu Y. Li Z. Chen F. Wu J. Li D. Li J. et al. Level of N6-Methyladenosine in Peripheral Blood RNA: A Novel Predictive Biomarker for Gastric Cancer Clin. Chem. 2020 66 342 351 10.1093/clinchem/hvz004
Xie J. Huang Z. Jiang P. Wu R. Jiang H. Luo C. Hong H. Yin H. Elevated N6-Methyladenosine RNA Levels in Peripheral Blood Immune Cells: A Novel Predictive Biomarker and Therapeutic Target for Colorectal Cancer Front. Immunol. 2021 12 760747 10.3389/fimmu.2021.760747 34659267
Kan L. Grozhik A.V. Vedanayagam J. Patil D.P. Pang N. Lim K.S. Huang Y.C. Joseph B. Lin C.J. Despic V. et al. The m(6)A pathway facilitates sex determination in Drosophila Nat. Commun. 2017 8 15737 10.1038/ncomms15737 28675155
Wang L. Wu Z. Zou C. Liang S. Zou Y. Liu Y. You F. Sex-Dependent RNA Editing and N6-adenosine RNA Methylation Profiling in the Gonads of a Fish, the Olive Flounder (Paralichthys olivaceus) Front. Cell Dev. Biol. 2020 8 751 10.3389/fcell.2020.00751 32850855
Bundy J.L. Vied C. Nowakowski R.S. Sex differences in the molecular signature of the developing mouse hippocampus BMC Genom. 2017 18 237 10.1186/s12864-017-3608-7 28302071