[en] Metabolic models are typically characterized by a large number of parameters. Traditionally, metabolic control analysis is applied to differential equation-based models to investigate the sensitivity of predictions to parameters. A corresponding theory for constraint-based models is lacking, due to their formulation as optimization problems. Here, we show that optimal solutions of optimization problems can be efficiently differentiated using constrained optimization duality and implicit differentiation. We use this to calculate the sensitivities of predicted reaction fluxes and enzyme concentrations to turnover numbers in an enzyme-constrained metabolic model of Escherichia coli. The sensitivities quantitatively identify rate limiting enzymes and are mathematically precise, unlike current finite difference based approaches used for sensitivity analysis. Further, efficient differentiation of constraint-based models unlocks the ability to use gradient information for parameter estimation. We demonstrate this by improving, genome-wide, the state-of-the-art turnover number estimates for E. coli. Finally, we show that this technique can be generalized to arbitrarily complex models. By differentiating the optimal solution of a model incorporating both thermodynamic and kinetic rate equations, the effect of metabolite concentrations on biomass growth can be elucidated. We benchmark these metabolite sensitivities against a large experimental gene knockdown study, and find good alignment between the predicted sensitivities and in vivo metabolome changes. In sum, we demonstrate several applications of differentiating optimal solutions of constraint-based metabolic models, and show how it connects to classic metabolic control analysis.
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
Wilken, St Elmo
Besançon, Mathieu
KRATOCHVIL, Miroslav ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Kuate, Chilperic Armel Foko
TREFOIS, Christophe ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
GU, Wei ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Ebenhöh, Oliver
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Interrogating the effect of enzyme kinetics on metabolism using differentiable constraint-based models
Adadi, Roi, Volkmer, Benjamin, Milo, Ron, Heinemann, Matthias, Shlomi, Tomer, Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters. PLoS Comput. Biol., 8(7), 2012, e1002575.
Ahmad, Zulfiqar, Brudecki, Laura E., Molecular modulation of the alpha-subunit visit-dg sequence in the catalytic sites of escherichia coli atp synthase. Faseb. J., 24, 2010 463-1.
Amos, Brandon, Kolter, J Zico, Optnet: differentiable optimization as a layer in neural networks. International Conference on Machine Learning, 2017, PMLR, 136–145.
Bar-Even 627, Arren, Noor, Elad, Savir, Yonatan, Liebermeister, Wolfram, Davidi, Dan, Tawfik, Dan S., Milo, Ron, The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:21 (2011), 4402–4410.
Beg, Qasim K., Vazquez, Alexei, Ernst, Jason, Menezes, Marcio A de, Bar-Joseph, Ziv, L Barabási, A.-, Oltvai, Zoltán N., Intracellular crowding defines the mode and sequence of substrate uptake by escherichia coli and constrains its metabolic activity. Proc. Natl. Acad. Sci. 104:31 (2007), 12663–12668.
Bennett, Bryson D., Yuan, Jie, Kimball, Elizabeth H., Rabinowitz, Joshua D., Absolute quan601 titation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat. Protoc. 3:8 (2008), 1299–1311.
Bezanson, Jeff, Alan Edelman, Karpinski, Stefan, Shah, Viral B., Julia: a fresh approach to numerical computing. SIAM Rev. 59:1 (2017), 65–98.
Boyd, Stephen, Boyd, Stephen P., Vandenberghe, Lieven, Convex Optimization. 2004, Cambridge university press.
Byrd, Richard H., Nocedal, Jorge, Waltz, Richard A., K nitro: an integrated package for nonlinear optimization. Large-scale Nonlinear Optimization, 2006, Springer, 35–59.
Chang, Antje, Jeske, Lisa, Ulbrich, Sandra, Hofmann, Julia, Koblitz, Julia, Ida, Schomburg, Neumann-Schaal, Meina, Jahn, Dieter, Schomburg, Dietmar, Brenda, the elixir core data resource in 2021: new developments and updates. Nucleic Acids Res. 49:D1 (2021), D498–D508.
Chen, Yu, Nielsen, Jens, Energy metabolism controls phenotypes by protein efficiency and allocation. Proc. Natl. Acad. Sci. 116:35 (2019), 17592–17597.
Yu Chen and Jens Nielsen. In vitro turnover numbers do not reflect in vivo activities of yeast enzymes. Proc. Natl. Acad. Sci., 118(32), 2021.
Chen, Yu, Nielsen, Jens, Mathematical modeling of proteome constraints within metabolism. Curr. Opin. Struct. Biol. 25 (2021), 50–56.
Cho, Han-Saem, Seo, SangWoo, Kim, Young Mi Gyoo Yeol Jung, Jong Moon Park. Engineering glyceraldehyde-3-phosphate dehydrogenase for switching control of glycolysis in escherichia coli. Biotechnol. Bioeng. 109:10 (2012), 2612–2619.
Consortium, UniProt, Uniprot: a worldwide hub of protein knowledge. Nucleic Acids Res. 47:D1 (2019), D506–D515.
Danisch, Simon, Krumbiegel, Julius, Makie, jl, Flexible high-performance data visualization for julia. Journal of open source software, 6(65), 2021, 3349, 10.21105/joss.03349 https://doi.org/10.21105/joss.03349.
Davidi, Dan, Noor, Elad, Liebermeister, Wolfram, Bar-Even, Arren, Flamholz, Avi, Tummler, Katja, Barenholz, Uri, Goldenfeld, Miki, Shlomi, Tomer, Milo, Ron, Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements. Proc. Natl. Acad. Sci. 113:12 (2016), 3401–3406.
De Groot, Daan H., Julia Lischke, Muolo, Riccardo, Planqué, Robert, Frank, J Bruggeman, Bas, Teusink, The common message of constraint-based optimization approaches: overflow metabolism is caused by two growth-limiting constraints. Cell. Mol. Life Sci. 77:3 (2020), 441–453.
Iván Domenzain, Benjamın Sánchez, Mihail Anton, Eduard J Kerkhoven, Aarón Millán-Oropeza, Céline Henry, Verena Siewers, John P Morrissey, Nikolaus Sonnenschein, and Jens Nielsen. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using gecko 2.0. Nat. Commun., 13, 2022.
Donati, Stefano, Kuntz, Michelle, Pahl, Vanessa, Farke, Niklas, Beuter, Dominik, Glatter, Timo, Jose Vicente Gomes-Filho, Randau, Lennart, Wang, Chun-Ying, Link, Hannes, Multi-omics analysis of crispri-knockdowns identifies mechanisms that buffer decreases of enzymes in e. coli metabolism. Cell systems 12:1 (2021), 56–67.
Dourado, Hugo, Lercher, Martin J., An analytical theory of balanced cellular growth. Nat. Commun. 11:1 (2020), 1–14.
Foster, Charles J., Wang, Lin, V Dinh, Hoang, Suthers, Patrick F., Maranas, Costas D., Building kinetic models for metabolic engineering. Curr. Opin. Biotechnol. 67 (2021), 35–41.
Groot, Daan H de, Hulshof, Josephus, Bas, Teusink, Frank, J Bruggeman, Planqué, Robert, Elementary growth modes provide a molecular description of cellular self-fabrication. PLoS Comput. Biol., 16(1), 2020, e1007559.
Hatzimanikatis, Vassily, Bailey, James E., Mca has more to say. J. Theor. Biol. 182:3 (1996), 233–242.
Heckmann, David, Lloyd, Colton J., Nathan, Mih, Ha, Yuanchi, Zielinski, Daniel C., Haiman, Zachary B., Abdelmoneim Amer Desouki, Martin J Lercher, and Bernhard O Palsson. Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. Nat. Commun. 9:1 (2018), 1–10.
Heckmann, David, Campeau, Anaamika, Lloyd, Colton J., Patrick, V Phaneuf, Ying, Hefner, Carrillo-Terrazas, Marvic, Feist, Adam M., Gonzalez, David J., Palsson, Bernhard O., Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers. Proc. Natl. Acad. Sci. 117:37 (2020), 23182–23190.
Heinrich, Reinhart, Schuster, Stefan, The Regulation of Cellular Systems. 2012, Springer Science & Business Media.
Henry, Christopher S., Broadbelt, Linda J., Hatzimanikatis, Vassily, Thermodynamics-based metabolic flux analysis. Biophys. J. 92:5 (2007), 1792–1805.
IBM ILOG Cplex. V20.1.0: User's Manual for Cplex. 2021, International business machines corporation.
Ishii, Nobuyoshi, Nakahigashi, Kenji, Baba, Tomoya, Robert, Martin, Soga, Tomoyoshi, Kanai, Akio, Hirasawa, Takashi, Miki, Naba, Hirai, Kenta, Hoque, Aminul, et al. Multiple high-throughput analyses monitor the response of e. coli to perturbations. Science 316:5824 (2007), 593–597.
Jan Schellenberger, Palsson, Bernhard Ø., Use of randomized sampling for analysis of metabolic networks. J. Biol. Chem. 284:9 (2009), 5457–5461.
Miles, John S., Guest, John R., Radford, Sheena E., Perham, Richard N., Investigation of the mechanism of active site coupling in the pyruvate dehydrogenase multienzyme complex of escherichia coli by protein engineering. J. Mol. Biol. 202:1 (1988), 97–106.
Monk, Jonathan M., Lloyd, Colton J., Brunk, Elizabeth, Nathan, Mih, Sastry, Anand, King, Zachary, Takeuchi, Rikiya, Nomura, Wataru, Zhang, Zhen, Mori, Hirotada, et al. Iml1515, a knowledgebase that computes escherichia coli traits. Nat. Biotechnol. 35:10 (2017), 904–908.
Moses, William, Churavy, Valentin, Instead of rewriting foreign code for machine learning, automatically synthesize fast gradients. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., (eds.) Advances in Neural Information Processing Systems, ume 33, 2020, Curran Associates, Inc., 12472–12485 url: https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf.
Müller, Stefan, Regensburger, Georg, Steuer, Ralf, Enzyme allocation problems in kinetic metabolic networks: optimal solutions are elementary flux modes. J. Theor. Biol. 347 (2014), 182–190.
Nilsson, Avlant, Nielsen, Jens, Metabolic trade-offs in yeast are caused by f1f0-atp synthase. Sci. Rep. 6:1 (2016), 1–11.
Noor, Elad, Flamholz, Avi, Liebermeister, Wolfram, Bar-Even, Arren, Milo, Ron, A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects. FEBS Lett. 587:17 (2013), 2772–2777.
Noor, Elad, Bar-Even, Arren, Flamholz, Avi, Reznik, Ed, Liebermeister, Wolfram, Milo, Ron, Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput. Biol., 10(2), 2014, e1003483.
Noor, Elad, Flamholz, Avi, Bar-Even, Arren, Davidi, Dan, Milo, Ron, Liebermeister, Wolfram, The protein cost of metabolic fluxes: prediction from enzymatic rate laws and cost minimization. PLoS Comput. Biol., 12(11), 2016, e1005167.
Orth, Jeffrey D., Thiele, Ines, Palsson, Bernhard Ø., What is flux balance analysis?. Nat. Biotechnol. 28:3 (2010), 245–248.
O'brien, Edward J., Lerman, Joshua A., Chang, Roger L., Hyduke, Daniel R., Palsson, Bernhard Ø., Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst. Biol., 9(1), 2013, 693.
Wilken, St. Elmo, Vera Frazão, Victor, Saadat, Nima P., Oliver, Ebenhöh, The view of microbes as energy converters illustrates the trade-off between growth rate and yield. Biochem. Soc. Trans. 49:4 (2021), 1663–1674.
Yang, Laurence, Ding, Ma, Ali, Ebrahim, Lloyd, Colton J., Saunders, Michael A., Palsson, Bernhard O., Solveme: fast and reliable solution of nonlinear me models. BMC Bioinf. 17:1 (2016), 1–10.
Zhou, Jingru, Zhuang, Yingping, Xia, Jianye, Integration of enzyme constraints in a genome500 scale metabolic model of aspergillus Niger improves phenotype predictions. Microb. Cell Factories 20:1 (2021), 1–16.