Reference : Interrogating the effect of enzyme kinetics on metabolism using differentiable constr...
Scientific journals : Article
Life sciences : Biochemistry, biophysics & molecular biology
http://hdl.handle.net/10993/52296
Interrogating the effect of enzyme kinetics on metabolism using differentiable constraint-based models
English
Wilken, St Elmo [> >]
Besançon, Mathieu [> >]
Kratochvil, Miroslav mailto [University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core]
Kuate, Chilperic Armel Foko [> >]
Trefois, Christophe mailto [University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core]
Gu, Wei mailto [University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core]
Ebenhöh, Oliver [> >]
2022
Metabolic Engineering
Yes
International
1096-7176
[en] Metabolic models are typically characterized by a large number of parameters. Traditionally, metabolic control analysis is applied to differential equation-based models to investigate the sensitivity of predictions to parameters. A corresponding theory for constraint-based models is lacking, due to their formulation as optimization problems. Here, we show that optimal solutions of optimization problems can be efficiently differentiated using constrained optimization duality and implicit differentiation. We use this to calculate the sensitivities of predicted reaction fluxes and enzyme concentrations to turnover numbers in an enzyme-constrained metabolic model of Escherichia coli. The sensitivities quantitatively identify rate limiting enzymes and are mathematically precise, unlike current finite difference based approaches used for sensitivity analysis. Further, efficient differentiation of constraint-based models unlocks the ability to use gradient information for parameter estimation. We demonstrate this by improving, genome-wide, the state-of-the-art turnover number estimates for E. coli. Finally, we show that this technique can be generalized to arbitrarily complex models. By differentiating the optimal solution of a model incorporating both thermodynamic and kinetic rate equations, the effect of metabolite concentrations on biomass growth can be elucidated. We benchmark these metabolite sensitivities against a large experimental gene knockdown study, and find good alignment between the predicted sensitivities and in vivo metabolome changes. In sum, we demonstrate several applications of differentiating optimal solutions of constraint-based metabolic models, and show how it connects to classic metabolic control analysis.
Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Researchers ; Professionals ; Students
http://hdl.handle.net/10993/52296
10.1016/j.ymben.2022.09.002
https://www.sciencedirect.com/science/article/pii/S1096717622001173

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Limited access
1-s2.0-S1096717622001173-main.pdfPublisher postprint1.56 MBRequest a copy

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.