Article (Scientific journals)
Interrogating the effect of enzyme kinetics on metabolism using differentiable constraint-based models
Wilken, St Elmo; Besançon, Mathieu; Kratochvil, Miroslav et al.
2022In Metabolic Engineering
Peer reviewed
 

Files


Full Text
1-s2.0-S1096717622001173-main.pdf
Publisher postprint (1.59 MB)
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Abstract :
[en] Metabolic models are typically characterized by a large number of parameters. Traditionally, metabolic control analysis is applied to differential equation-based models to investigate the sensitivity of predictions to parameters. A corresponding theory for constraint-based models is lacking, due to their formulation as optimization problems. Here, we show that optimal solutions of optimization problems can be efficiently differentiated using constrained optimization duality and implicit differentiation. We use this to calculate the sensitivities of predicted reaction fluxes and enzyme concentrations to turnover numbers in an enzyme-constrained metabolic model of Escherichia coli. The sensitivities quantitatively identify rate limiting enzymes and are mathematically precise, unlike current finite difference based approaches used for sensitivity analysis. Further, efficient differentiation of constraint-based models unlocks the ability to use gradient information for parameter estimation. We demonstrate this by improving, genome-wide, the state-of-the-art turnover number estimates for E. coli. Finally, we show that this technique can be generalized to arbitrarily complex models. By differentiating the optimal solution of a model incorporating both thermodynamic and kinetic rate equations, the effect of metabolite concentrations on biomass growth can be elucidated. We benchmark these metabolite sensitivities against a large experimental gene knockdown study, and find good alignment between the predicted sensitivities and in vivo metabolome changes. In sum, we demonstrate several applications of differentiating optimal solutions of constraint-based metabolic models, and show how it connects to classic metabolic control analysis.
Research center :
- Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Wilken, St Elmo
Besançon, Mathieu
Kratochvil, Miroslav ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Kuate, Chilperic Armel Foko
Trefois, Christophe ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Gu, Wei ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Ebenhöh, Oliver
External co-authors :
yes
Language :
English
Title :
Interrogating the effect of enzyme kinetics on metabolism using differentiable constraint-based models
Publication date :
2022
Journal title :
Metabolic Engineering
ISSN :
1096-7176
Peer reviewed :
Peer reviewed
Available on ORBilu :
since 01 October 2022

Statistics


Number of views
84 (13 by Unilu)
Number of downloads
0 (0 by Unilu)

Scopus citations®
 
6
Scopus citations®
without self-citations
4
OpenCitations
 
2
WoS citations
 
6

Bibliography


Similar publications



Contact ORBilu