Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
CubeSat-CDT: A Cross-Domain Dataset for 6-DoF Trajectory Estimation of a Symmetric Spacecraft
MOHAMED ALI, Mohamed Adel; RATHINAM, Arunkumar; GAUDILLIERE, Vincent et al.
2022In Proceedings of the 17th European Conference on Computer Vision Workshops (ECCVW 2022)
Peer reviewed
 

Documents


Texte intégral
CubeSat-CDTA Cross-Domain Dataset for 6-DoF Trajectory Estimation of a Symmetric Spacecraft.pdf
Postprint Éditeur (3.6 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Vision; Deep Learning; Space Situational Awareness
Résumé :
[en] This paper introduces a new cross-domain dataset, CubeSat- CDT, that includes 21 trajectories of a real CubeSat acquired in a labora- tory setup, combined with 65 trajectories generated using two rendering engines – i.e. Unity and Blender. The three data sources incorporate the same 1U CubeSat and share the same camera intrinsic parameters. In ad- dition, we conduct experiments to show the characteristics of the dataset using a novel and efficient spacecraft trajectory estimation method, that leverages the information provided from the three data domains. Given a video input of a target spacecraft, the proposed end-to-end approach re- lies on a Temporal Convolutional Network that enforces the inter-frame coherence of the estimated 6-Degree-of-Freedom spacecraft poses. The pipeline is decomposed into two stages; first, spatial features are ex- tracted from each frame in parallel; second, these features are lifted to the space of camera poses while preserving temporal information. Our re- sults highlight the importance of addressing the domain gap problem to propose reliable solutions for close-range autonomous relative navigation between spacecrafts. Since the nature of the data used during training impacts directly the performance of the final solution, the CubeSat-CDT dataset is provided to advance research into this direction.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Computer Vision Imaging & Machine Intelligence (CVI²)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MOHAMED ALI, Mohamed Adel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
RATHINAM, Arunkumar  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
GAUDILLIERE, Vincent ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
ORTIZ DEL CASTILLO, Miguel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
CubeSat-CDT: A Cross-Domain Dataset for 6-DoF Trajectory Estimation of a Symmetric Spacecraft
Date de publication/diffusion :
2022
Nom de la manifestation :
European Conference on Computer Vision Workshops
Date de la manifestation :
October 23-27, 2022
Manifestation à portée :
International
Titre du périodique :
Proceedings of the 17th European Conference on Computer Vision Workshops (ECCVW 2022)
Peer reviewed :
Peer reviewed
Projet FnR :
FNR14755859 - Multi-modal Fusion Of Electro-optical Sensors For Spacecraft Pose Estimation Towards Autonomous In-orbit Operations, 2020 (01/01/2021-31/12/2023) - Djamila Aouada
Disponible sur ORBilu :
depuis le 26 septembre 2022

Statistiques


Nombre de vues
322 (dont 37 Unilu)
Nombre de téléchargements
545 (dont 50 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu