Article (Périodiques scientifiques)
Benchmarking of univariate pleiotropy detection methods applied to epilepsy
Adesoji, Oluyomi M.; Schulz, Herbert; MAY, Patrick et al.
2022In Human Mutation, 43 (9), p. 1314-1332
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Benchmarking of univariate pleiotropy detection methods applied to epilepsy.pdf
Preprint Auteur (13.83 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Association; Epilepsies; Meta-analysis; Pleiotropy; SNPs
Résumé :
[en] AbstractPleiotropy is a widespread phenomenon that may increase insight into the etiology of biological and disease traits. Since genome-wide association studies frequently provide information on a single trait only, only univariate pleiotropy detection methods are applicable, with yet unknown comparative performance. Here, we compared five such methods with respect to their ability to detect pleiotropy, including meta-analysis, ASSET, cFDR, CPBayes, and PLACO, by performing extended computer simulations that varied the underlying etiological model for pleiotropy for a pair of traits, including the number of causal variants, degree of traits’ overlap, effect sizes as well as trait prevalence, and varying sample sizes. Our results indicate that ASSET provides the best trade-off between power and protection against false positives. We then applied ASSET to a previously published ILAE consortium dataset on complex epilepsies, comprising genetic generalized epilepsy and focal epilepsy cases and corresponding controls. We identified a novel candidate locus at 17q21.32 and confirmed locus 2q24.3, previously identified to act pleiotropically on both epilepsy subtypes by a mega-analysis. Functional annotation, tissue-specific expression and regulatory function analysis as well as Bayesian co-localization analysis corroborated this result, rendering 17q21.32 a worthwhile candidate for follow-up studies on pleiotropy in epilepsies.This article is protected by copyright. All rights reserved.
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Disciplines :
Génétique & processus génétiques
Neurologie
Auteur, co-auteur :
Adesoji, Oluyomi M.
Schulz, Herbert
MAY, Patrick  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
KRAUSE, Roland  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Lerche, Holger
Nothnagel, Michael
Epilepsies, Ilae Consortium On Complex
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Benchmarking of univariate pleiotropy detection methods applied to epilepsy
Date de publication/diffusion :
septembre 2022
Titre du périodique :
Human Mutation
ISSN :
1059-7794
eISSN :
1098-1004
Maison d'édition :
John Wiley & Sons, Ltd
Volume/Tome :
43
Fascicule/Saison :
9
Pagination :
1314-1332
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Systems Biomedicine
Projet FnR :
FNR11583046 - Epileptogenesis Of Genetic Epilepsies, 2017 (01/04/2018-30/06/2021) - Roland Krause
Intitulé du projet de recherche :
MechEPI
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 27 mai 2022

Statistiques


Nombre de vues
146 (dont 8 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
2
OpenCitations
 
0
citations OpenAlex
 
3
citations WoS
 
3

Bibliographie


Publications similaires



Contacter ORBilu