Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
A RNN-Based Hyper-Heuristic for Combinatorial Problems
KIEFFER, Emmanuel; DUFLO, Gabriel; DANOY, Grégoire et al.
2022In A RNN-Based Hyper-Heuristic for Combinatorial Problems
Peer reviewed
 

Documents


Texte intégral
A_RNN_based_Hyper_heuristic_for_combinatorial_problems.pdf
Preprint Auteur (563.21 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Deep Symbolic Regression; Multi-dimensional Knapsack; Hyper-heuristics
Résumé :
[en] Designing efficient heuristics is a laborious and tedious task that generally requires a full understanding and knowledge of a given optimization problem. Hyper-heuristics have been mainly introduced to tackle this issue and are mostly relying on Genetic Programming and its variants. Many attempts in the literature have shown that an automatic training mechanism for heuristic learning is possible and can challenge human-based heuristics in terms of gap to optimality. In this work, we introduce a novel approach based on a recent work on Deep Symbolic Regression. We demonstrate that scoring functions can be trained using Recurrent Neural Networks to tackle a well-know combinatorial problem, i.e., the Multi-dimensional Knapsack. Experiments have been conducted on instances from the OR-Library and results show that the proposed modus operandi is an alternative and promising approach to human- based heuristics and classical heuristic generation approaches.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
KIEFFER, Emmanuel ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
DUFLO, Gabriel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
DANOY, Grégoire  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
VARRETTE, Sébastien ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
BOUVRY, Pascal ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A RNN-Based Hyper-Heuristic for Combinatorial Problems
Date de publication/diffusion :
2022
Nom de la manifestation :
Evolutionary Computation in Combinatorial Optimization: 22nd European Conference, EvoCOP 2022
Date de la manifestation :
from 20-04-2022 to 22-04-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
A RNN-Based Hyper-Heuristic for Combinatorial Problems
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 22 mai 2022

Statistiques


Nombre de vues
350 (dont 39 Unilu)
Nombre de téléchargements
280 (dont 8 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1
citations OpenAlex
 
3
citations WoS
 
0

Bibliographie


Publications similaires



Contacter ORBilu