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Abstract. Designing efficient heuristics is a laborious and tedious task
that generally requires a full understanding and knowledge of a given
optimization problem. Hyper-heuristics have been mainly introduced to
tackle this issue and are mostly relying on Genetic Programming and its
variants. Many attempts in the literature have shown that an automatic
training mechanism for heuristic learning is possible and can challenge
human-based heuristics in terms of gap to optimality. In this work, we
introduce a novel approach based on a recent work on Deep Symbolic
Regression. We demonstrate that scoring functions can be trained using
Recurrent Neural Networks to tackle a well-know combinatorial problem,
i.e., the Multi-dimensional Knapsack. Experiments have been conducted
on instances from the OR-Library and results show that the proposed
modus operandi is an alternative and promising approach to human-
based heuristics and classical heuristic generation approaches.

Keywords: Deep Symbolic Regression · Multi-dimensional Knapsack ·
Hyper-heuristics.

1 Introduction

Real-word combinatorial problems are typically NP-hard and of large size, mak-
ing them intractable with exact approaches from the Operations Research lit-
erature. Numerous non-exact approaches (e.g., heuristics, metaheuristics) have
thus been proposed to provide solutions in polynomial time. Nonetheless, de-
signing heuristics remains a difficult exercise requiring a lot of trials and can be
difficult to generalize to large scale instances. The lack of guarantees can also be
prohibitive for some decision makers. Hyper-heuristics have been therefore de-
signed as a methodology assisting solution designers in creating heuristics using
Evolutionary Learning. Similarly to what is done in machine learning to build
classifiers or regressive models, one can “learn to optimize” a specific problem
by training a constructive model on a large set of instances. Some successful at-
tempts in the literature (e.g. [14], [2], [4]) relied on constructive hyper-heuristics.
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The latter can be considered as a meta-algorithm that permits to engineer au-
tomatically heuristics using an existing set of instances. Hyper-heuristics essen-
tially search through the space of heuristics or heuristic components instead
of the space of solutions and use specific instances’ data and properties (e.g.,
objective coefficients, columns for a mathematical problem) as inputs for the de-
sign of heuristics. As described in the next sections, hyper-heuristics have been
historically applied to select existing heuristics and combine them together. De-
spite their very good results, they are constrained by the existing knowledge
of a problem. This means that for a new problem with few existing heuris-
tics, the chance to produce an efficient hyper-heuristic remains low as the search
space is very restricted. On the contrary, constructive hyper-heuristic approaches
assemble heuristics’ components through evolution and have the advantage to
spawn unseen ones. The limitations encountered by the original selective hyper-
heuristics are thus removed with this constructive version. Historically, only
Genetic Programming (GP) algorithms and their variants have been considered
as constructive hyper-heuristics. In this work, we propose to generate heuris-
tics and more precisely scoring functions based on a recent advance in Deep
Symbolic Regression (DSR) [33]. Indeed, authors considered a Recurrent Neu-
ral Network (RNN) trained with Reinforcement Learning to provide probability
distributions over symbolic expressions with the aim of solving regression prob-
lems. Learning symbolic expressions offers multiple advantages such as readabil-
ity, interpretability and trustworthiness. The authors also note that the recent
advances in Deep Neural Networks underexplore this aspect. We here propose
to investigate the potential of this new approach to learn symbolic expressions
as novel scoring functions for the Multi-dimensional Knapsack Problem (MKP).
The latter has been widely study, hence our interest for it. We compare a GP-
based hyper-heuristic against a RNN trained to solve MKP instances from the
OR-library [12]. We demonstrate that the scoring functions obtained after train-
ing produce competitive results with state-of-the-art approaches and outperform
the GP-based hyper-heuristic reference for the Multi-dimensional Knapsack.
The remainder of this article is organized as follows. The related work section
details the classification of hyper-heuristics existing in the recent literature as
well as the latest advances of symbolic regression. Section 3 introduces the MKP
as well as some other resolution approaches. Section 4 introduces the proposed
Deep Hyper-heuristic (DHH) which is subsequently compared to the reference
GP-based hyper-heuristic on the MKP. Then, experimental setup and results
are discussed in section 5 and 6 respectively. Finally, the last section provides
our conclusions and proposes some possible perspectives.

2 Related work

Described as “heuristics to choose heuristics” by Cowling et al. [13], hyper-
heuristics refer to approaches combining artificial intelligence methods to design
heuristics. Contrary to algorithms searching in the space of solutions, hyper-
heuristic algorithms search in the space of algorithms, i.e. heuristics, in order
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to determine the best heuristics combination to solve a problem. Burke et al.
in [8] compared hyper-heuristics as “off-the-peg” methods which are generic
approaches providing solutions of acceptable quality as opposed to “made-to-
measure” techniques. This need of generalization is clearly related to machine
learning approaches. Therefore, hyper-heuristics can be classified as learning
algorithms and have been motivated by the following factors: the difficulty of
maintaining problem-specific algorithms and the need of automating the design
of algorithms. Two methodologies of hyper-heuristics rose from the literature:
the first one is referred to as heuristic selection while the second one is described
as heuristic generation.

Heuristic selection is the “legacy” approach which involves determining the
best subset of heuristics solving a problem. Among these approaches, we can
distinguish constructive and perturbation methods. Constructive methods as-
semble a solution step by step, starting from a partial or empty solution. The
construction of a full solution is achieved through the selection and application
of a heuristic to this partial solution. For this purpose, a pre-existing set of
heuristics should be provided in order to determine the best heuristics to apply
at a given state of the search. The resolution then stops when the solution is
complete. Constructive methods have been applied for instance on vehicle rout-
ing [23], 2D packing [28], constraint satisfaction [32] and scheduling [22]. On
the contrary, perturbation methods start from a valid solution and attempt to
modify it using a pre-existing set of perturbation heuristics. At each step, one
heuristic is selected from this set and applied to the solution. According to a
specific acceptance strategy factor (e.g., deterministic or non-deterministic), the
new solution is accepted or rejected. It is also possible to perturb multiple so-
lutions at once but it has been seldom used in the literature. Scheduling [25],
space allocation [5] and packing [6] are problems where such perturbation meth-
ods have been exploited.

More recently, a growing interest has been devoted to heuristic generation.
The motivation behind this approach is the automatic generation mechanism
which does not rely on a possible set of pre-existing heuristics. Instead of search-
ing in the space of heuristics, the hyper-heuristic searches in the space of com-
ponents, i.e., instance data. Building a complete heuristic is not a trivial task
but it has been performed using Genetic Programming. In contrast to Genetic
Algorithms (GA) where solution vectors are improved via genetic operators, GP
algorithms evolve a population of programs until a certain stopping criterion
is satisfied. Programs are expressed as tree structures which means that their
length is not defined a priori contrary to GAs. The suitability of GP algorithms
to produce heuristics has been outlined in a survey by Burke et al. [9]. The
major advantage brought by GP algorithms is the possibility to automatize the
assembly of building blocks, i.e. terminal sets and function sets emerging from
knowledge gained on a problem. Concerning the MKP, this knowledge can be
easily retrieved from the literature. Additionally, the dynamic length of the tree
encoding is an advantage if some size limitations are implemented. Indeed, large
programs will tend to have over-fitting symptoms meaning that the generated
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heuristics will be very efficient on the training instances but not on new ones.
These are typically the same issues faced by machine learning models. GP-based
hyper-heuristics encountered real successes in cutting and packing [10], function
optimization [31] and other additional domains [18], [40], [30]. In addition, it is
worth mentioning the recent approaches such as Cartesian GP and Grammar-
based GP algorithms which are improvements of classical GP algorithms. Carte-
sian GP algorithms is an alternative form of GP algorithms encoding a graph
representation of a computer program. Cartesian GP defines explicitly a size pre-
venting bloat but can be very sensitive to parameters. In Grammar-based GP
algorithms [7], a grammar in Backus-Naur Form (BNF) is considered to map
linear genotypes to phenotype trees and have less structural difficulties than a
classical GP algorithms.

Contrary to [33] which only considers regression problems, we extend the
field of application of Deep Recurrent Networks to the task of learning scoring
functions for a combinatorial problem such as the MKP. Nonetheless, it is worth
mentioning recent advances in symbolic regression using deep neural networks
although there are few attempts in the literature. For instance, a neural network
implementation has been investigated in [39] as a pre-processing approach before
using symbolic regression. In [36], authors have explored symbolic operators as
activation functions while keeping neural networks differentiable. In [26], vari-
ational encoders have been considered for the first time to encode and decode
parse trees using predefined grammar rules. Finally, [33] recently proposed a
RNN to generate probability distributions over symbolic expressions. Authors
have relied on pre-order traversal to build abstract syntax tree representing equa-
tions. They also illustrate and compare their approach with other frameworks
and outperformed most of them. This is the reason why we rely on this last
contribution to build a new type of hyper-heuristic. One should also note that
the aforementioned works only investigated small scale regression problems and
their suitability still needs to be demonstrated for large-scale problems. In this
work, we partially answer this last question when extending the approach to
hyper-heuristics.

3 Multi-dimensional 0-1 Knapsack

The Multi-dimensional 0-1 Knapsack (MKP) is a NP-hard combinatorial prob-
lem which extends the well-know 0-1 Knapsack problem for multiple sacks. The
objective is to find a subset of items maximizing the total profit and fitting into
the m sacks. Each item j gives a profit pj and occupies some space aij in the
sack i. Each sack i has a maximum capacity bi which should not be exceeded.
The Multi-dimensional 0-1 Knapsack can be formally expressed as a 0-1 Integer
Linear Program (ILP) as illustrated by Program 1.

More practically, the MKP is a resource allocation problem. It received a
wide attention from many communities, including the Operations Research and
Evolutionary Computing ones. Multiple heuristics and metaheuristics have been
designed to tackle the MKP in addition to the existing exact approaches which
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maximize

n∑
j=1

pjxj (1)

subject to

n∑
j=1

aijxj ≤ bi ∀i ∈ {1, ...,m} (2)

xj ∈ {0, 1} ∀j ∈ {1, ..., n} (3)

Program. 1. 0-1 ILP for the multi-dimensional knapsack

can only handle small instances. Among existing heuristics for the MKP, greedy
heuristics are designed to be fast, i.e., work in polynomial time. Generally, these
are constructive methods that can be categorized as primal or dual heuristics. A
primal heuristic starts from a feasible solution and tries to improve the objective
value while keeping the solution feasible. On the contrary, a dual heuristic starts
from an upper-bound solution (in case of maximization), i.e., not feasible, and
attempts to make it feasible while minimizing the impact on the objective value.
For example, [37] considered a dual heuristic with a starting solution taking all
items. Then, the heuristic removed items according to an increasing ratio until
feasibility was reached. The ratio or score of each item j is computed as follows:
rj =

pj∑m
i wiaij

. Weights wi are sometimes omitted since they add a new level

of complexity and are specific to the considered instances. Using Lagrangian
relaxation, [29] improves the dual heuristic of [37].

Concerning primal heuristics, items are added as long as all constraints re-
main satisfied. In this case, items with the largest ratios have priority. These
new heuristics using dual multipliers give insights about the variables to fix.
Further improvements based on bound tightness [21], threshold acceptance [17]
and noising approaches [11] have contributed to improve such heuristics. The
interested reader may refer to the survey on MKP heuristics by Fréville [20].

Metaheuristics have also been considered to solve MKP instances. These
are stochastic algorithms which successfully tackled many combinatorial opti-
mization problems, including the MKP. A simulated annealing algorithm has
been first employed in [16] where specific random moves should maintain fea-
sibility during the search. Many diverse metaheuristics have been then consid-
ered to solve the MKP during the last decade including Ant Colony Optimiza-
tion [19], Genetic algorithms [27], Memetic algorithms [12], Particle Swarm al-
gorithms [24], Fish Swarm algorithms [3] and Bee Colony algorithms [38].

4 A RNN-based Hyper-heuristic

Contrary to most GP-based hyper-heuristics building full syntax trees and apply-
ing evolutionary operators to generate new ones, we propose hereafter to consider
RNNs for this task. Based on the RNN architecture proposed in [33], we posit
that Deep Recurrent Networks for symbolic expressions are perfectly suitable to
learn scoring functions for a combinatorial problem such as the MKP. A scoring



6 E. Kieffer et al.

function takes as inputs information about an item to be added to the sacks.
This function measures the pertinence of the given item j which is represented
by the profit pj and the column of the constraint matrix A.j .

Fig. 2. Workflow of the RNN-based Hyper-Heuristic (RHH): sampling (1), evaluation
(2) and training (3).

Although the DSR approach proposed in [33] has the unique purpose to
tackle symbolic regression problems, we propose to extend it in order to create
a RNN-based Hyper-heuristic (RHH) generating sequences of tokens described
in Table 1. A sequence can then be decoded into a symbolic expression repre-
sented as a binary tree, i.e., each node can only have at most one sibling. The
sequence of tokens is produced by the RNN in a autoregressive manner, i.e., kth

token prediction depends on the previously obtained tokens. RNNs model effi-
ciently time-varying information such as sequences. The RHH implementation
presented hereafter provides a one-to-one mapping between the sampled sym-
bolic expressions and the resulting scoring functions to solve MKP instances.
This implementation can be decomposed into 3 main iterative steps as depicted
in Fig. 2. The first one (1) is the sampling step in which a batch of symbolic
expressions is produced. The second step (2) turns symbolic expressions into
scoring functions which are subsequently evaluated using a greedy heuristic tem-
plate to generate rewards. Finally, the last step (3) performs a one-step gradient
ascent to update the embedded RNN’s weights using Policy Gradient. All these
steps are described in details in the following sections.

4.1 Sampling symbolic expressions (1)

Let us define T , the set of tokens which can be sampled. This set is equivalent
to the union of terminal and non-terminal sets defined in GP algorithms. Table
1 provides a description of all tokens considered to generate scoring functions
for the Multi-dimensional Knapsack. Among these tokens, we selected the entire
column describing an item, the average difference between the capacity and the
average resource consumption for item j, the maximal resources consumption
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and the total resource consumption of item j. In order to discriminate good
items from bad ones, we also add as prior knowledge the solution of the LP
relaxation which is clearly a very good feature for our learning purpose. The
set shown in Table 1 is not exhaustive and could be easily completed with new
features to discriminate more accurately profitable items from valueless ones.

Table 1. The set of tokens T which are components of scoring functions

Name Description
Operators

+ Add two inputs
- Substract two inputs
* Multiply two inputs
% Divide two inputs with protection

Terminal sets/ Arguments
pj Profit of the current item j

dj =
∑
i bi−aij
m

Average difference between the capacity
and the resource consumption for item j

a1j Resource consumption of item j for sack 1
a2j Resource consumption of item j for sack 1
a...,j ...
amj Resource consumption of item j for sack m

sj =
∑
i aij Total resource consumption of item j for sack i

mj = maxi aij Max resource consumption of item j for sack i
x̄j Solution value for item j after LP relaxation

The following describes how scoring functions are created from sampled sym-
bolic expressions using a Recurrent Neural Network (RNN) as illustrated in Fig.
3. The first inputs provided to the networks are necessarily empty since the tree
representation of the future symbolic expression is empty (see step 0 in Fig.
3). Therefore, an empty token < E > is added to the set of tokens listed in
Table 1. At each step i, the next token τsi is sampled according to the pre-order
traversal. Its future location in the tree is thus known which means that the
parent and sibling nodes can be identified and provided as inputs to the RNN
cell. This is illustrated in Fig. 3 where the left-child of the root node will host
the next token. Its parent is obviously the root node and it has no sibling yet.
The RNN returns a logit vector Li which is passed to a softmax layer. This
very common layer permits to obtain a discrete probability distribution over all

tokens at step i, i.e.,
|T |∑
k=1

p(τki |τsi−1; θ) = 1. The sampled token τsi (x̄j in step 1)

is then added to the tree. Please note that sampled tokens τsi and τsi−1 are not
necessarily connected in the resulting tree. In fact, they can be far from each
other as depicted in Fig. 3. This is due to the hierarchical structure induced by
the traversal. As a consequence, a sample token at step i − 1 is not necessarily
provided as input for step i. This is illustrated by step 5 in Fig. 3. “Teacher
forcing” is therefore considered to replace inputs by the true parent and sibling
with regards to the traversal. Finally when the expression is complete, i.e., no
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empty leaves, one can define the log-likehood of the sample sequence of tokens

τ , i.e., sampled symbolic expression, as follows: log p(τ |θ) =
|τ |∑
i=1

log p(τsi |τsi−1; θ).

Fig. 3. Example of scoring function: x̄j(
dj
a4
j
− dj) generated from a sampled sequence

of tokens (length=7). Blue circles represent parent inputs while green ones stand for
sibling. Outputs are illustrated by yellow circles and are obtained after applying a
softmax layer and sampling with regards to a discrete probability distribution over
all possible tokens. Dashed circles represent missing token positions still need to be
filled. At each step, parent and sibling tokens are presented to the RNN cell. The
tree representation grows according to the pre-order traversal (recursively traverse left
subtree first)

4.2 Evaluation of the resulting scoring functions (2)

A sampled symbolic expression can then be turned into a scoring function applied
inside a so-called heuristic template (see Algorithm 1) in order to evaluate its
relevance to provide an efficient insertion order of items into the sacks. The
combination of this template and a scoring function characterizes a heuristic
which is subsequently applied on a set of multiple MKP instances I, i.e., a
training set. In this work, we consider a primal heuristic template starting from a
feasible and trivial solution and selecting items ranked using a generated scoring
function until sacks are full. Ranking is obtained by applying the scoring function
on item data.

4.3 RNN training and gradient update (3)

In order to train the RNN to produce efficient scoring functions, a reward/fitness
for the sequence of tokens R(τ) is proposed as follows: R(τ) = 1

1+
∑|I|
j=1 v

j
τ

with
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Algorithm 1 greedy heuristic(instance,function)

1: value ← 0
2: solution ← [0,0,...,0]
3: sacks ← [0,0,...,0]
4: indexes ← sort(items,function)
5: while indexes 6= ∅ do
6: index ← indexes.pop head()
7: if sacks[i] + instance.A[i, index] ≤ instance.rhs[i] ∀i ∈ {1, ...,m} then
8: solution[index]← 1
9: value← value+ instance.p[index]
10: for i ∈ {1, ...,m} do
11: sacks[i]← sacks[i] + instance.A[i, index]
12: end for
13: end if
14: end while
15: return value

vjτ the solution value obtained by solving the jth instance of I with the scoring
function generated from the sequence of tokens τ .

The RNN is trained on batches of N sampled expressions B = {τ (k)}Nk=1 using
Policy Gradients ∇θJ(θ) = Eτ [R(τ)∇θ log p(τ |θ)], . The loss function L(θ) is
therefore expressed in this way:

L(θ) =
1

N

N∑
k=1

R(τ (k)) log p(τ (k)|θ) (4)

Although solving MKP instances is deterministic, the spread of rewards can
be very large. Consequently, the policy gradient will have high-variance. One way
to mitigate this problem is to substract a baseline to rewards by some constant
value, which is normally the mean of the rewards. The RNN training steps are
described hereafter:

1. Initialise the network with random weights

2. Generate a batch B of N sampled expressions

3. Expressions are turned into scoring functions and injected into the heuristic
template (see algorithm 1)

4. Heuristics are applied on a set I of training instances and rewards R(τk) are
computed based on the resolution of instances.

5. The L(θ) = 1
N

∑N
k=1R(τ (k)) log p(τ (k)|θ) is computed according to rewards

and the log-likelihood

6. Perform a gradient ascent step update of the network’s weights, maximizing
the policy gradient

7. Repeat 2. until stopping criterion is met

The next section defines experimental setup to assess the proposed hyper-
heuristic, namely RHH.
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5 Experimental setup

The MKP instances from the OR-Library 3 have been considered. These have
been originally introduced by [12] and include 270 instances classified according
to the number of variables(items) n ∈ {100, 250, 500}, number of constraints
m ∈ {5, 10, 30} and tightness ratio r ∈ {0.25, 0.50, 0.75}.

In order to evaluate the efficiency of the trained heuristics, i.e., the combion-
ation of the heuristic template and trained scoring functions, on these instances,
we adopt as performance measure the %-gap (see equation 5) between a lower
bound and an upper bound. Lower bounds are provided by the heuristics, i.e., vh,
while the continuous LP relaxation, i.e., vlp, will be the reference upper bound.
In addition, we multiply all gaps by 100.

%-gap = 100 ∗ vlp − v
h

vlp
(5)

The RNN-based Hyper-heuristic (RHH) will be compared to a GP-based
hyper-heuristic described in [14]. Table 2 details all the GP parameters and
GP operators used by these authors. They performed 50 generations with a
population size of 10000 scoring functions. Contrary to GAs, GP algorithms
make a different use of the evolutionary operators. First of all, their probabilities
should sum to 1. For example, in the case of Table 2, 85% of the solutions
will mate with another one, 10% will face mutations and only 5% will be kept
without any modifications for the next generation. In order to keep control of
the size of each syntax tree, they prevent trees from having a depth greater than
17 nodes. The interested reader can refer to [14] for more details on the GP
implementation.

Table 2. GP parameters

Generations 50

Population size 10000

Crossover Probability (CXPB) 0.85

Mutation Probability (MUTPB) 0.1

Reproduction Probability 0.05

Tree initialization method Ramped half-and-half

Selection Method Tournament selection with size=7

Depth limitation 17

Crossover Operator One point crossover

Mutation Operator Grow

Finally both approaches, i.e., RHH and the GP-based hyper-heuristic, follow
the same protocol to train scoring functions. All instances have been divided
into groups depending on the number of variables, the number of constraints

3 http://people.brunel.ac.uk/ mastjjb/jeb/orlib/mknapinfo.html
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and the tightness ratio. Both hyper-heuristics have been applied on all groups
which contain ten instances each. Five random instances have been selected as
training instances while the remaining five instances have been considered as
validation instances. The reported %-gaps are only computed on the validation
instances. For each group, five runs have been performed in order to obtain an
average %-gap and the best scoring function has been recorded.

Table 3 lists all hyperparameters describing the RNN. A single layer with
32 units has been considered. A maximum of 500000 sampled expressions are
generated to provide fair comparisons with the GP-based hyper-heuristic. The
RNN is trained on batches of 1000 sampled expressions. The Adam optimiser
is set up with a learning rate of 0.0005 and has been selected to optimise the
RNN’s weights.

Table 3. RNN parameters

Max sample 500000

Batch size 1000

RNN cell type LSTM

Number of layers 1

Number of units 32

Optimizer Adam

Learning rate 0.0005

Hidden state initializer zeros

Experiments have been conducted on the High Performance Computing (HPC)
platform of the University of Luxembourg. Each run was completed on a single
core of an Intel Xeon E5-2680 v3 @ 2.5 GHz, 32Gb of RAM server, which was
dedicated to this task.

6 Experimental results

The average %-gap obtained after 5 runs is provided in Table 4. The left part of
this table represents the results reported in [14] while the right part corresponds
to the RNN-based Hyper-Heuristic approach (RHH) proposed in this work.

Each row depicts a specific instance set ORnXm divided into groups of dif-
ferent tightness ratios. For example, the average %-gap obtained for the instance
set OR5x100 with tightness ratio 0.25 is 4.98 for the GP-based Hyper-heuristic
approach. Gray shaded cells indicate that the average %-gap is better for the
considered approach. For example, the average %-gap obtained for the instance
set OR5x100 with tightness ratio 0.25 is reported better for the RHH approach.

Table 4 shows us that each instance set ORnXm has a better average %-gap
when solved with the RHH approach. When considering tightness ratios, we can
observe that RHH outperforms all instances with r = 0.25 and r = 0.5 while this
is not the case for r = 0.75. The tightness ratio defines the scarcity of capacities.
The closer to 0 the tightness ratio the more constrained the instance. Indeed, a



12 E. Kieffer et al.

ratio r = 0.25 implies that about 25% of the items can be packed contrary to a
ratio r = 0.75 where 75% of the items can be packed. These results show that
the proposed RHH approach is able to handle more efficiently different levels of
tightness.

Table 4. Average gaps (%) of the best found heuristics on the ORlib instances ordered
by tightness ratio

Original approach RHH

Instance set 0.25 0.50 0.75 Average 0.25 0.50 0.75 Average

OR5x100 4.98 2.05 1.36 2.80 1.58 2.02 2.33 1.98

OR5x250 3.08 1.66 0.77 1.84 0.49 0.47 0.85 0.60

OR5x500 2.38 1.64 0.71 1.58 0.26 0.22 0.51 0.33

OR10x100 7.39 3.54 2.26 4.40 2.30 2.34 3.38 2.67

OR10x250 4.43 2.78 1.15 2.79 1.01 0.66 1.25 0.98

OR10x500 3.77 1.97 0.99 2.24 0.38 0.35 0.57 0.43

OR30x100 8.67 4.70 2.43 5.27 3.41 2.06 6.01 3.83

OR30x250 5.73 3.25 1.70 3.56 1.33 1.20 2.34 1.62

OR30x500 4.80 2.54 1.40 2.91 0.80 0.56 0.95 0.77

All instances 5.03 2.68 1.42 3.04 1.29 1.10 2.02 1.47

The best scoring functions obtained with RHH are listed in Table 5. One can
notice the presence of x̄j , i.e., the solution of the LP relaxation for variable xj ,
in all resulting scoring functions. Interestingly, multiple scoring functions do not
include the profit pj (e.g., OR30x500-0.75). The size of each scoring function
is rather reasonable and no “bloating” effect, generally experienced with GP
algorithms, can be observed.

Table 5. Best scoring functions obtained for each benchmark

Scoring funtions

Instance set 0.25 0.50 0.75

OR5x100 x̄j − (dj + sj) ∗ x̄2
j/pj ((−dj ∗ sj ∗ x̄j + 1)/sj − a1j)/(a3j + mj) ((a1j + dj)/a2j − dj) ∗ x̄j

OR5x250 x̄j/(a1j ∗ x̄j − sj) x̄j/(−(a5j + dj)/mj − a1j − sj) −(−(a3j −mj ∗ x̄j)/a1j + dj − sj) ∗ x̄j + dj
OR5x500 −pj − dj ∗ x̄2

j + dj −(pj + sj ∗ x̄2
j − x̄j) ∗ x̄j + a1j (−(dj + dj/pj) ∗ x̄j + a5j + sj + x̄j)/(s2j + x̄j)

OR10x100 (a1j − sj) ∗ x̄j (−(pj + a2j)) ∗ x̄j + a2j) ∗ x̄j ((pj + a9j)/sj)− x̄j

OR10x250 −x̄j + 1/a1j (a10j/sj)− x̄j (a2j − a4j − sj)) ∗ x̄2
j

OR10x500 (pj − sj) ∗ x̄2
j −pj ∗ dj ∗ x̄j + a4j x̄j/(−(a2j + sj) ∗ dj + a4j + 2a5j)

OR30x100 pj ∗ x̄j/(−sj + x̄j) x̄j/(−a27j − dj + x̄j) −pj ∗ x̄j + dj
OR30x250 a12j − sj ∗ x̄j (−pj + x̄j) ∗ x̄j pj ∗ (a24j + a29j − sj) ∗ x̄j

OR30x500 pj ∗ x̄j/(−dj + sj) x̄j/(a7j − sj) x̄j/(−dj + sj)

Last but not least, Table 6 presents the %-gap obtained by different existing
methods from the literature on the same benchmarks. The approach proposed in
this work, i.e., RHH, obtains a good rank, i.e., 6th position which demonstrates
the suitability of using recurrent neural architectures to assist in building heuris-
tics.
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Table 6. Comparisons with multiple existing approaches over all ORlib instances in
terms of gap (%)

Type Reference %-gap

MIP [15] (CPLEX 12.2) 0.52

MA [12] 0.54

Selection HH [15] 0.70

MA [42] 0.92

Heuristic [34] 1.37

RHH this work 1.47

Heuristic [21] 1.91

Metaheuristic [35] 2.28

GHH [14] 3.04

MIP [12](CPLEX 4.0) 3.14

Heuristic [1] 3.46

Heuristic [41] 6.98

Heuristic [29] 7.69

Hyper-heuristics or automatic generation of heuristics are not dedicated to
provide the best results. They are general approaches which have been proposed
to facilitate the generation of good performing and fast algorithms to solve
problems. Table 6 shows that despite their general approach, they can provide
better results than dedicated algorithms.

7 Conclusion and Perspectives

Traditionally, hyper-heuristics are GP-based approaches evolving heuristics rep-
resented by abstract syntax trees. In this paper, we proposed a new hyper-
heuristic model based on deep symbolic expressions to automatically solve com-
binatorial problems such as the Multidimensional Knapsack. We tackled the
generation of scoring functions to measure the pertinence of adding an item to
the sacks. These functions therefore allow finding an inserting order in the sacks
and provide reasonable educated guesses to solve the MKP. Contrary to the clas-
sical knapsack with a single constraint, it is not trivial to manually discover an
efficient scoring procedure for multi-dimensional variants of the knapsack. After
detailing the methodology, we compared a state-of-the-art GP hyper-heuristic
versus the new deep hyper-heuristic approach. To measure the performance of
both approaches and fairly confront them, validation instances which have been
not presented to both hyper-heuristics during training served to compute a per-
formance measure, i.e., %-gap. Results show that the proposed methodology
relying on this recurrent neural architecture outperforms the classical GP-based
hyper-heuristic on this problem. Training symbolic expressions with deep learn-
ing has the benefit to provide efficient predictions while keeping scoring functions
explainable. Symbolic expressions can be easily analysed by experts contrary to
a network providing only black-box scoring values which would be difficult to
interpret. Future works will attempt to apply the proposed approach to “Col-
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umn Generation (CG)”, a well-known Operation Research technique, to solve
large-scale problems. This would notably be helpful to cope with degeneracy.
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