Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
Syntactic Vs. Semantic similarity of Artificial and Real Faults in Mutation Testing Studies
OJDANIC, Milos; GARG, Aayush; KHANFIR, Ahmed et al.
2023
 

Documents


Texte intégral
Syntactic_Versus_Semantic_Similarity_of_Artificial_and_Real_Faults_in_Mutation_Testing_Studies.pdf
Postprint Éditeur (4.83 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Fault Injection; fault seeding; machine learning; mutation testing; semantic model; syntactic distance
Résumé :
[en] Fault seeding is typically used in empirical studies to evaluate and compare test techniques. Central to these techniques lies the hypothesis that artificially seeded faults involve some form of realistic properties and thus provide realistic experimental results. In an attempt to strengthen realism, a recent line of re- search uses machine learning techniques, such as deep learning and Natural Language Processing, to seed faults that look like (syntactically) real ones, implying that fault realism is related to syntactic similarity. This raises the question of whether seeding syntactically similar faults indeed results in semantically similar faults and, more generally, whether syntactically dissimilar faults are far away (semantically) from the real ones. We answer this question by employing 4 state-of-the-art fault-seeding techniques (PiTest - a popular mutation testing tool, IBIR - a tool with manually crafted fault patterns, DeepMutation - a learning-based fault seeded framework and μBERT - a mutation testing tool based on the pre-trained language model CodeBERT) that operate in a fundamentally different way, and demonstrate that syntactic similarity does not reflect semantic similarity. We also show that 65.11%, 76.44%, 61.39% and 9.76% of the real faults of Defects4J V2 are semantically resembled by PiTest, IBIR, μBERT and Deep- Mutation faults, respectively.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SerVal - Security, Reasoning & Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
OJDANIC, Milos  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
GARG, Aayush ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
KHANFIR, Ahmed ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
DEGIOVANNI, Renzo Gaston ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
PAPADAKIS, Mike ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
LE TRAON, Yves ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
Langue du document :
Anglais
Titre :
Syntactic Vs. Semantic similarity of Artificial and Real Faults in Mutation Testing Studies
Date de publication/diffusion :
2023
Nombre de pages :
15
Projet FnR :
FNR13646587 - Risk Analysis Of Software Requirements Specification, 2019 (01/07/2020-30/06/2023) - Michail Papadakis
Organisme subsidiant :
PayPal
Disponible sur ORBilu :
depuis le 30 décembre 2021

Statistiques


Nombre de vues
321 (dont 41 Unilu)
Nombre de téléchargements
128 (dont 1 Unilu)

citations OpenAlex
 
10

Bibliographie


Publications similaires



Contacter ORBilu