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Syntactic Versus Semantic Similarity of Artificial and
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Abstract—Fault seeding is typically used in empirical studies
to evaluate and compare test techniques. Central to these tech-
niques lies the hypothesis that artificially seeded faults involve some
form of realistic properties and thus provide realistic experimental
results. In an attempt to strengthen realism, a recent line of re-
search uses machine learning techniques, such as deep learning
and Natural Language Processing, to seed faults that look like
(syntactically) real ones, implying that fault realism is related to
syntactic similarity. This raises the question of whether seeding
syntactically similar faults indeed results in semantically similar
faults and, more generally whether syntactically dissimilar faults
are far away (semantically) from the real ones. We answer this
question by employing 4 state-of-the-art fault-seeding techniques
(PiTest - a popular mutation testing tool, IBIR - a tool with manu-
ally crafted fault patterns, DeepMutation - a learning-based fault
seeded framework and µBERT - a mutation testing tool based
on the pre-trained language model CodeBERT) that operate in
a fundamentally different way, and demonstrate that syntactic
similarity does not reflect semantic similarity. We also show that
65.11%, 76.44%, 61.39% and 9.76% of the real faults of Defects4J
V2 are semantically resembled by PiTest, IBIR, µBERT and Deep-
Mutation faults, respectively.

Index Terms—Fault injection, fault seeding, machine learning,
mutation testing, semantic model, syntactic distance.

I. INTRODUCTION

FAULT seeding techniques, such as mutation testing, are
extensively used in controlled studies to evaluate and

compare testing techniques [41], [42]. These techniques al-
low researchers to seed faults under experimentally controlled
conditions and thus perform reproducible test assessments. In
a sense, by comparing the number of seeded faults revealed
by test methods, researchers can form a proxy metric that ap-
proximates the fault-revealing potential of the performed testing
[9], [30], [43].

Although popular, such techniques have been criticised for
producing unrealistic faults [12], [23], [45], [55], i.e., faults that
are significantly different from real ones in terms of syntax [23],
and as a result, numerous propositions have been made claiming
to produce seeded faults that are syntactically similar to real
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ones. The most recent research, in particular, motivated by the
code naturalness hypothesis [25],1 aims at forming realistic
faults that are, in fact, artificial faults that have some form of
syntactic similarity to real ones, i.e., usually following partic-
ular syntactic fault patterns. We call this line of work as fault
mimicking approaches.

Table I lists a set of recent fault-mimicking techniques that
aim, in diverse forms, at generating (syntactically) realistic
faults. By inspecting the table, the research trend becomes evi-
dent as these techniques seek the realism of fault-seeding, which
is defined and evaluated by some form of non-semantic metrics,
i.e., mainly syntactic-based metrics (number of tokens changed,
BLEU score, etc.) from real faults. This means that many studies
are solely guided by syntactic metrics and not semantic ones.
Nevertheless, such approaches may indeed succeed at generating
some exact matches of targeted real faults and may indeed be
effective in their domain. However, since those fault mimicking
methods are guided by non-semantic metrics, a key question
that remains is whether they are suitable for fault-based test
assessment [42], as is the typical use of mutation testing in
research studies [9], [41], [42].

Mutation testing is based on the basis that fault seed-
ing should be performed using untargeted program syntactic
changes [18], [37], [38]. These changes are defined using the
programming language grammar and are completely unaware
of any fault semantics. The key assumption is that simple
syntactic changes, although syntactically dissimilar to com-
plex faults, result in semantic deviations that are coupled with
complex and real faults2 [15], [38] and can be used for test
assessment [9].

In contrast, the key strategy followed by fault mimicking is to
identify program locations where fault opportunities emerge and
perform relevant changes, following a pattern observed in some
fault instances, that alter the program behaviours similarly to real
faults. This implies an underlying assumption that seeding faults
with frequent syntactic fault patterns that have similarities with
a real fault will result in faults that are subtle or semantically
similar to real ones. Similarly, another assumption is that seed-
ing faults that are syntactically dissimilar to real ones results in

1Naturalness hypothesis states that programs exhibit properties similar to
text and thus, natural language process techniques can be used to support code
analysis techniques.

2In this paper we use the term “real faults” to refer to the set of reproducible
curated faults provided at the Defects4J dataset [29]. Therefore, our results reflect
the similarities between the artificial faults and their corresponding curated fault.
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TABLE I
FAULT MIMICKING TECHNIQUES

unrealistic faulty semantics, i.e., the seeded fault semantics are
quite different from those of real faults.

These assumptions may appear intuitive but have absence of
evidence, except of course, in the case where seeded faults match
exactly real ones. Early research on the coupling effect [38]
stated that “simple faults can cascade or couple to form other
emergent faults”, implying that fault instances couple indepen-
dently of their pattern. Additionally, recent studies report large
semantic overlaps between simple and complex faults [28], [35],
[41], questioning the role of the syntactic-based metrics.

This raises the question of whether syntactically similar, or
dissimilar, faults are also semantically similar, or dissimilar.
More generally, a question of whether the use of such techniques
results in faults that: a) are semantically similar to real faults,
b) resemble (semantically) more faults than the dissimilar ones,
and c) are subsumed by simple untargeted syntactic deviations
as done by mutation testing, i.e., whether they form a useful
addition to mutation testing.

We answer the above questions by employing four fun-
damentally different fault-seeding techniques. These include
PiTest [16], a popular mutation testing tool [33], that uses
simple syntactic patterns, IBIR [31], a mutation testing tool
with manually crafted fault patterns, DeepMutation [53], a deep
learning-based tool that derives patterns from real bug-fixes [55],
and μBERT [17], a mutation testing tool that uses a pre-trained
language model (CodeBERT [19]). Hence, we investigate the
ability of all faults produced by these techniques to form similar
semantic deviations as the real faults of Defects4J V2 [29]
and check their potential utility within mutation-based test
assessment.

Perhaps surprisingly, our results show that syntactic similarity
does not reflect semantic similarity, indicating that syntactic
distance cannot be used as an evaluation metric in the context
of mutation testing. Additionally, our results show that the
real faults of Defects4J V2 can be semantically resembled and
subsumed by μBERT, PiTest, IBIR and DeepMutation faults,
respectively.

Moreover, we also show that simple faults introduced by
IBIR subsume almost all faults introduced by other tools, being
complemented in ≈ 2% by PiTest and μBERT. Furthermore,

when controlling the number of seeded faults, we find that
μBERT resembles similar number of real faults as PiTest, while
IBIR keeps a significantly higher ratio compared with the rest of
the tools in ≈10%. Additionally, we find that other techniques
probably subsume DeepMutation, whose technique produces
significantly fewer mutants which are, at the same time, easier to
kill (on average, DeepMutation’s mutants are killed by 10 more
tests compared to other tools).

Overall, our work aims at raising awareness on the use of se-
mantic and syntactic evaluation metrics in fault seeding studies.
Our key contribution regards the use of non-semantic metrics,
where we expose and refute the use of syntactic metrics and
provide evidence related to the utility of recent fault seeding
advances in the test assessment context. Our findings also sig-
nificantly improve our understanding on the role of the faults’
syntactic nature with respect to program semantics and the use
of the semantic-based metrics in the context of fault-based test
assessment.

II. SYNTACTIC AND SEMANTIC SIMILARITY OF ARTIFICIAL

AND REAL FAULTS

Mutation seeds artificial faults, called mutants, by performing
simple syntactic modifications to the program under analy-
sis [42]. For instance, in expressions like a < b, faults are
seeded by mutating the expression to the following one a < b.
Mutant faults are then used to assess the effectiveness and thor-
oughness of a test suite in detecting these artificial faults. A test
case that detects a mutant fault, i.e., that is capable of producing
distinguishable observable outputs between the mutant and the
original program, is said to be able to kill the mutant. A mutant
is said to be killed if it is detected by a test case or a test suite;
otherwise, it is called live or survived. Test adequacy is called
mutation score and is computed as the ratio of killed mutants
over the total number of generated mutants.

Two types of metrics are usually used to evaluate fault seeding:
syntactic and semantic similarity. Table I lists studies using
predominantly syntactic similarity, while several studies have
used some form of semantic similarity [28], [30], [31], [43].
Intuitively, syntactic similarity refers to the distance between
the text representations of the mutant and the real faulty code,
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Fig. 1. Semantic similarity. Mutant M0 perfectly resembles (semantically)
faultB, whileM1,M2 andM6 resemble it partially.M6 resemblesB better than
M2 andM1 since it correctly detected 2 out of 3 cases that detect eitherB orM6,
while M2 detected 1 out of 3 cases and M1 1 out of 2. M1 underestimates test
effectiveness as it does not capture t1,M2 does not capture t0 and overestimates
effectiveness as it mistakenly captures t2, while M6 mistakenly captures t2.

while semantic similarity to the program behaviour similarities
between the mutant and the real fault.

To compute the syntactic similarity between two sequences of
tokens, we employ the Bilingual Evaluation Understudy (BLEU)
score [44], which is widely used for quantifying machine-
translated text in NLP [27], [34], [49], [51]. Given a text of
reference, the BLEU score takes the candidate text, breaks it
into n-grams, and computes how many n-grams appear in the
reference text. We report the geometric mean of all n-grams up
to 4, similar to previous work [55].

To compute the semantic similarity we resort to dynamic
test executions since capturing all program behaviours is an
undecidable problem. We, thus, use a similarity coefficient, the
Ochiai coefficient, to compute the similarity of the passing and
failing test cases. This is a common practice in many different
lines of work, such as mutation testing [28], [31], [43] program
repair [24] and code analysis [22] studies. Since semantic sim-
ilarity compares the behaviour between two program versions
using a reference test suite, Ochiai coefficient [37] approximates
program semantics using passing and failing test cases.

Intuitively, the Ochiai coefficient represents the ratio between
the set of tests that fail in both versions over the total number
of tests that fail in sum of the two. Precisely, let P1, P2, fTS1

and fTS2 be two programs and their respective set of failing
tests, then the Ochiai coefficient between programs P1 and P2

is computed as Ochiai(P1, P2) =
|fTS1∩fTS2|√
|fTS1|×|fTS2|

, where | · |
denotes the set size.

Fault Resemblance: A mutant M resembles fault B, if and
only if its semantic similarity is equal to 1, i.e., Ochiai(B,M)
= 1.

Example of Semantic Similarity: Let B be a real fault, M =
{M0, . . . ,M6} a set of mutants andT = {t0, . . . , t4} a set of test
cases. Fig. 1 depicts the mutant killings of T andM . We observe
that tests t0 and t1 detect fault B. Particularly, mutant M0 is
killed by the same tests, t0 and t1, resulting in a semantic similar-
ity with the faultB equal to 1. MutantM1, is killed by test t0 that
also finds faultB, but is not killed by test t1, and thus its semantic
similarity is Ochiai(B,M1) = |{t0}|/

√|{t0, t1}| × |{t0}| =
1/
√
2× 1 = 0.71. Mutant M2 is killed by tests t1 and t2, so

its semantic similarity is Ochiai(B,M2) = 1/
√
2× 2 = 0.50.

TABLE II
SEMANTIC SIMILARITY BETWEEN THE REAL FAULT AND THE MUTANTS

CAPTURED FROM FIG. 1. MUTANT M0 PERFECTLY RESEMBLES

(SEMANTICALLY) FAULT B

The semantic similarity between mutant M3 and the fault B is
0.40 (Ochiai(B,M3) = 1/

√
2× 3 = 0.40). Semantic similar-

ity ofM4 (w.r.t. faultB) is 0, since all tests killing mutantM4 do
not detect the fault. Mutant M5 is killed by all tests (t0, . . . , t4)
and has a semantic similarity ofOchiai(B,M5) = 2/

√
2× 5 =

0.63. Notice that mutantM6 is killed by tests t0, t1 and t2, where
2 of them also find the fault, leading to a semantic similarity of
Ochiai(B,M6) = 2/

√
2× 3 = 0.82. Table II summarises the

Ochiai coefficient between the mutants and the real fault B.

III. MOTIVATING EXAMPLE

We demonstrate the potential differences between syntactic
and semantic deviations in fault seeding by using an example
from the work of Tufano et al. [55]. Consider the following
example3:

In this example, the remove method first accesses one
of the attributes of the invoking object (this.VAR_2) and
invokes the method remove recursively, saving the result
in variable VAR_1. Then, it returns null in the case that
VAR_1 was null, otherwise, it returns the result of invok-
ing VAR_1.get(). Tufano et al. in their work seed a fault
that resembles exactly the real faulty instance, which is the
following:

The fault is caused because of the conditional check that is
skipped and, indeed, resembles a real fault made by develop-
ers [55]. In particular, this fault removes the check on whether
the result of the recursive call is null.

3This example was taken from [55, Figure 2] and demonstrates a successful
case where the fault seeded by Tufano et al. matches exactly a real fault.
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Consider now a particular fault seeded by “traditional” muta-
tion testing, using simple syntactic changes (e.g., generated by
the REMOVE_CONDITIONALS4 operator from PiTest [16]):

This mutant replaces the condition null != VAR_1 by
true, causing the guarded statements (i.e., VAR_1.get())
to be executed irrespective of the condition.

Interestingly, by comparing the two faulty instances, one can
easily observe that they are syntactically different despite being
semantically equivalent. One can also observe that a simple
syntactic transformation, such as the one used by mutation test-
ing, perfectly matches the complex transformation learned by
Tufano et al. To make the differences concrete, we can compute
the BLEU scores (syntactic similarity between seeded and real
fault), i.e., the evaluation metric used by Tufano et al. [55], and
see that the returned scores are 1 and 0.48, respectively. However,
as the mutants are equivalent and resemble a real fault, their
semantic similarity is 1 despite the large difference in the BLEU
scores.

The above example clearly shows that seeded faults do not
necessarily need to be similar to real faults in order to resemble
them. At the same time, the above example demonstrates the
fault coupling [38], i.e., simple syntactic transformations, such
as those used by mutation testing, couple to more complex faults.
In this particular case, the transformation performed by mutation
is significantly smaller than Tufano et al. as it has a BLEU
score (syntactic similarity from the original code) of 0.85, while
Tufano et al. has 0.39.

IV. RESEARCH QUESTIONS

We start our analysis by recording the syntactic and semantic
similarity between seeded and real faults. We perform this
analysis to understand the general relation between seeded and
real faults and check if there are any associations between
these two variables. The existence of such a relationship will
provide evidence that fault seeding techniques, instead of us-
ing grammar-based (simple) transformations as is traditionally
done in mutation testing, should attempt to form frequent fault
patterns and design fault seeding techniques guided by actual
fault instances, in a sense follow a similar path to static code
analysis [26], [47]. Therefore, we ask:

RQ1 How semantically and syntactically similar are seeded and real
faults?

The answer to this question will provide evidence on the use of
syntactic distance metrics in evaluating fault seeding methods in
the context of mutation-based test assessment. More precisely,

4https://pitest.org/quickstart/mutators/#REMOVE_CONDITIONALS

whether seeded faults with small (or big) syntactic distance from
the actual faults are indeed semantically close (or far) to actual
faults (at least closer than those not syntactically similar).

Syntactic evaluation metrics are used by recent research
(Table I), and there is no empirical evidence of their suitability in
test assessment. This means that we want to check whether the
techniques of Table I could be used in mutation testing studies
and whether syntactic distance metrics are appropriate in this
context.

Answering the above question aims to investigate general
trends among seeded and real faults. However, it does not say
much about the extent to which real faults are resembled by
seeded ones and does not provide quantitative evidence on the
real faults that can be resembled (have high semantic similarity)
by syntactically close and far seeded faults. Thus, we ask:

RQ2 How many real faults we can (semantically) resemble by using
syntactically similar and dissimilar seeded faults?

In case we find many syntactically similar seeded faults being
semantically similar to real ones, we have evidence that syntactic
distance actually leads to “True Positives” and may be used in
mutation testing. On the contrary, if we find many syntactically
similar seeded faults that are semantically dissimilar to real ones,
we have evidence that syntactic distance leads to many “False
Positives”. Similarly, if we find many syntactically dissimilar
seeded faults that are semantically similar to real ones, then we
have evidence that fault-mimicking techniques produce many
“False Negatives”. By putting all cases together, we have evi-
dence on how effective fault-mimicking techniques are.

While we investigated the relationship between seeded and
real faults, we have not said much about how the faults from
different seeding techniques differ, w.r.t., the resemblance of
real faults by different techniques. Hence we ask:

RQ3 How do the employed techniques compare to each other in
resembling real faults?

Knowing how different techniques compare provides evi-
dence in support of semantic fault resemblance. In particular,
we check whether there is a compliment in fault resemblance or
subsumption between fundamentally different approaches.

Overall, answering these questions raises awareness on the
use of semantic and syntactic metrics in fault seeding and pro-
vides evidence on fault resemblance by fault seeding techniques.

V. FAULT SEEDING

PiTest (PIT) [16] is a state-of-the-art mutation testing tool
that works by analyzing bytecode sequences and by looking
for a possible location, i.e., instruction, to seed faults using
syntactic transformation rules (aka mutant operators). The mu-
tation operators are categorized into 29 task-specific distinct
groups. Examples of groups include Conditionals Boundary
and Return Value mutators, which seed variations concerning
relational operators and method call return values. PiTest has
over 120 mutant operators, among which are many experimental
mutants used for scientific purposes. For this study, we take into
consideration all mutants generated by PiTest.
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IBIR [31] is a fault seeding tool that uses an information-
retrieval-based fault localization model (IRFL) combined with
automatic program repair inverted fix-patterns. It favours the
generation of few but realistic mutants (similar to real ones).
It takes as input the git repository of the program to mutate
and a bug report, written in natural language and seeds faults
(introducing multiple faulty versions) that emulate the fault
described in the bug report.

IBIR starts by analysing the given bug report using IRFL [57]
to identify locations that are likely to be related to the features
impacted by the corresponding fault. It then applies fault patterns
on the identified locations, which are inverted fix-patterns used in
pattern-based automated program repair approaches [31]. As the
fix patterns are crafted from real bug-fixes, their inverse would
induce faults similar to real faults. IBIR repeats this process
until exhausts all pre-defined patterns. In this study, we run IBIR
on the classes changed by the bug-fix on Defects4J to exclude
the mutants from other classes, and we apply all pre-defined
patterns exhaustively on every location, instead of mutating only
the lines predicted by the IRFL. This will allow us to explore
more faulty patterns and study more broadly their relationship
with real faults. Under this setting, IBIR results in producing a
large number of mutants for the studied subjects.

DeepMutation [53] generates mutants by employing Neural
Machine Translation [55] aka NMT, which is also used by
many recent studies [20], [21], [52], [54]. It uses an NMT
model trained on a large corpus (∼787 k) of existing bug-fixing
commits mined from GitHub repositories. It takes a Java method
as input and outputs a mutant. In this study, we use beam search to
generate a maximum of 10 mutants per method, which provides
us with a more thorough study of the correlation with real faults.

In particular, every method is abstracted, in which the user-
defined variable names and literals are replaced by predefined
identifiers to obtain an abstracted code representation (as shown
in Section III). These abstracted code representations are then
input into the trained NMT model to produce abstracted mutants.
The user-defined variable names and literals are restored to
obtain source-code mutants.

We use the publicly available trained model of DeepMuta-
tion [2] to generate the mutants andsrc2abs [7] tool to perform
the abstraction process. We followed the guidelines [53] and
used beam search to generate 10 mutants per method.
μBERT [17] is a mutation testing tool that uses a pre-

trained language model (CodeBERT) to generate mutants by
masking and replacing tokens. μBERT takes a Java class, ex-
tracts tokenized expressions, which are then masked for token
replacement (mutation), e.g., for binary expressions μBERT
masks the binary operator, and invokes CodeBERT to com-
plement the masked sequence. For instance, in sequence int
mid = (low + high) / 2;μBERT mutates the variable
name expression low by feeding CodeBERT with the masked
sequenceint mid = (<mask> + high) / 2;. Code-
BERT predicts the 5 most likely tokens to replace the masked
one, e.g., it predicts low, mid, Low, high, and medium
for the given masked sequence. μBERT uses these predictions
to generate mutants by replacing the masked token with the
predicted ones (5 mutants are created per masked token).μBERT

discards non-compilable mutants and those that are syntactically
the same as the original program, which are the cases in which
CodeBERT predicts the original masked token (aka duplicated
mutants [32]).

VI. EXPERIMENTAL SETUP

A. Real Faults

We used Defects4J [29] v2.0,0, which contains over 800 faults
with supporting build infrastructure and forms one of the largest
collections of reproducible real faults for Java programs.

Every fault in the dataset consists of the faulty and fixed
versions of the code, a developer’s test suite accompanying
the project, and information regarding the commit modified
classes and the patches produced to fix the fault. The faults
have been manually minimized, so every irrelevant change to
the fix has been removed. The dataset also includes at least one
fault-triggering test that fails in the faulty version and passes in
the fixed one.

For the purpose of this study, we consider the following
projects and the number of faults. We refer to these curated faults
(mined through a systematic process) as real faults. We consider
Defects4J faults as a good sample since it consists of real,
systematically mined faults that have been built independently of
the present study. From Apache Commons [1] family, consisting
of a collection of projects of Java utility classes, we include
commons-cli (39), commons-codec (18), commons-compress
(33), commons-csv (16), commons-math (101), commons-lang
(63), commons-collections (4), commons-jxpath (22). We also
include projects from the Jackson [4] family, which is a suite
of data-processing tools for Java, we include jackson-core (26),
jackson-databind (102), and jackson-dataformat-xml (6). Addi-
tionaly, we include faults from: Mockito (28), one of the most
popular mocking frameworks in Java; Jsoup (90), a Java library
for HTML parsing; Gson (18), a Java library for JSON parsing
and generation from and into java objects; and joda-time (26), a
project for the Java date and time classes.

Defects4J faults span more than a decade of development
history, making it hard to apply all faulty versions with all the
studied tools. Therefore, due to unsatisfied build requirements
caused by the technical constraints, we do not consider certain
faulty versions. The technical issues we encountered included
obsolete dependencies not supported by studied tools, old testing
frameworks (for example, some faults contain JUnit 3 while
the tools work on JUnit4+), Java language versions (some of
the tools require java 1.8+ to apply faulty patterns while the
project Jfreechart (number of faults 26) and Closure-compiler
(174) contain 1.5 or 1.6). Furthermore, five versions of the
Math project also fall under this category. Additionally, at the
time of conducting this study, we found that 5 faults from the
Jsoup project were not compilable due to technical reasons, as
already reported [3]. Overall, some of the studied tools have
been recently developed and are versions specific, not being
able to satisfy all the reported building requirements. In total, we
analyzed 592 faults from 15 projects and generated a significant
number of artificial faults that portray a representative dataset
for our investigation.
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TABLE III
MUTANTS USED

B. Artificially Seeded Faults

For each selected faulty project version from Defects4J, we
start by identifying the modified classes between the faulty and
fixed versions. Next, we generate mutants by employing the
selected mutation testing tools for the fixed version of each
modified class.

Table III records the number of faults analysed by each tool
and the number of mutants generated. Overall, PiTest generated
1,120,719 mutants for the 508 faults that it was successfully
applied to. μBERT was successfully applied on 481 faults and
produced a set of 286,763 mutants. DeepMutation produces ten
mutants per method, and thus, it produced 119,017 mutants for
the 530 faults that it was successfully applied. After applying all
faulty patterns from IBIR, it produces 1,094,493 mutants, per
bug report, for the 382 faults that it operates.

After generation, in the mutant detection phase, we execute
relevant tests from Defects4j, as those tests are carefully filtered
by the framework to leave out flaky tests. We use Defects4Js
predefined compile and test scripts.

C. Experimental Procedure

We start by executing every generated mutant using the De-
fects4J framework, thus, recording the set of failing tests dis-
tinguishing (killing) each mutant. After, we proceed to compute
syntactic and semantic similarities between the mutants and the
corresponding faults, relying on the metrics defined in Section II.
Thus, the syntactic similarity between the mutant (artificially
seeded fault) and the real fault will be measured in terms of the
BLEU score, while the semantic similarity will be characterised
by the Ochiai coefficient between the mutant and the fault. It is
worth mentioning that, since PiTest produces the mutations at the
bytecode level, we perform the syntactic similarity computation
between the bytecode instruction sequences corresponding to
mutants and faults.

To answer RQ1, we check the existence of correlations among
the syntactic and semantic similarity of the seeded and real faults.
We consider all the mutants created by all studied tools and anal-
yse several cases; when mutants located in the project classes
and when mutants located on the same methods modified by
the related fault fixing patch, according to the information given
by Defects4J (modified-methods mutants). In all cases, we aim
for general trends that indicate a relationship between syntactic
and semantic, over different percentages, similarity (e.g., values
greater than 80%). We also check whether high scores for syntac-
tic similarity (i.e., seeded and real faults are syntactically similar)
imply high scores for semantic similarity (i.e., seeded and real
faults behave the same), and whether low scores for syntactic

metrics imply low scores for semantic metrics. To perform this,
we sort mutants in ascending order according to their syntactic
similarity. Thus, we organise them into four sorted quartiles Q1,
Q2, Q3 and Q4, where Q1 represents the most syntactically
dissimilar mutants, w.r.t., the fault (lowest syntactic scores),
while Q4 represents the most syntactically similar mutants w.r.t.
the fault (highest syntactic scores). For the mutants in each
quartile, we also analyse their semantic similarity w.r.t. the fault,
aiming to observe if there is any evidence that more syntactically
dissimilar mutants behave very differently than the faults and
whether syntactically similar mutants behave the same as the
faults. To avoid potential threats in the quartiles composition,
it is worth noting that we do not consider mutants which are
extreme cases and introduce noise, such as those with Ochiai
equal to zero and those that syntactically exactly match the real
faults.

To further strengthen our analysis, we examine whether there
are faults that do not have syntactically close mutants that are
semantically close. Similarly, we examine if there are faults that
do have syntactically distant mutants that are semantically close.
We consider semantically close mutants to be the ones with
Ochiai > .8, and syntactically close or distant, if they belong
to previously defined Q4 or Q1, respectively. In particular, we
count the number of faults with at least one mutant that is seman-
tically close, among all mutants that are syntactically close and
distant to the fault. We also do the same count among randomly
picked mutants of the same sample size as the syntactically
close and distant sets of mutants. This means that a relationship
between the two metrics exists if there are many more faults with
high semantic similarity to the mutants that are syntactically
similar than to either those that are syntactically distant or to
the randomly picked ones. Furthermore, we also analyze the
extreme cases (i.e., the set of semantically and syntactically most
close and most distant mutants). To do so, we repeat the previous
analysis, but now from the set of semantically closest mutants,
per fault, we select semantic and syntactic relations between the
syntactically closest and the syntactically most distant mutant.
We plot the data points on a scatter plot and further evaluate
their relationship with statistical tests. This process allows us to
check whether there is any potential trend in the very extreme
case of syntactic similarities. Additionally, we also measure the
average semantic or syntactic closeness of the faults and check
whether there are any statistical differences among the sets of se-
mantically/syntactically close or distant mutants. Therefore, we
study the average semantic closeness of the most syntactically
similar mutants (Q4) and the most syntactically distant mutants
(Q1), plus the average syntactic closeness of the most seman-
tically similar mutants (Q4) and the most semantically distant
mutants (Q1).

Finally, we check the number of mutants that are in the inter-
section of the closest and distant syntactically and semantically
similar mutant sets. In particular, we compute the average size
of the intersection set between the most semantically close and
most syntactically close mutants and compare it with that of
the most syntactically distant and most semantically distant
ones. Suppose the intersection of both sets – semantically close
but syntactically distant mutants and vice versa – is similar
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to the intersection of mutants semantically and syntactically
close. In that case, we can reason that even if exists a small
set of mutants semantically and syntactically close, there also
exist mutants which are semantically similar but syntactically
dissimilar (or vice versa), indicating that semantic similarity
exists independently of syntactic similarity. We also measure
the average size of the intersection, since a high intersection
would suggest that for the small sets of mutants, high syntactic
similarity encloses high semantics and vice versa. While the
low intersection would further confirm our hypothesis around
the absence of a relationship between semantic and syntac-
tic similarity. To reduce the impact of selecting an arbitrary
mutant sample size on our obtained results, we repeat this
analysis with the closest and most distant 5, 10 and 20 mu-
tants as well as the 5% and 10% closest mutants w.r.t. both
metrics.

To answer RQ2, we measure the ratio of real faults for
which at least one mutant has semantic similarity equal to
1. We focus the analysis on the same quartile split as done
for RQ1 to observe whether syntactically similar or dissim-
ilar mutants yield higher semantic similarity over different
projects.

In RQ3, we analyse the percentage of real faults that each tool
can resemble. Plus, we study the ability of the tools to resemble
different faults. It is noted that we consider the intersection of
faults for which each tool can generate mutants. To make a fair
comparison, we are controlling for the number of seeded mu-
tants. We, thus, study tool pairs based on the number of mutants
each tool generates by randomly selecting and controlling the set
of mutants for each tool and calculating the tool’s mean ratio to
produce a mutant that resembles the real fault. We do this to avoid
bias because each tool generates a different number of mutants.
To avoid coincidental results, we repeated the experiment 100
times.

Our dataset of generated mutants and results are publicly
available in the accompanying website [6].

D. Statistical Analysis

To study the relationships between semantic and syntactic
properties, we use a correlation metric since it analyses any
statistical relationships between variables, whether causal or not.
In particular, we use the Kendall rank coefficient (τ ) (Tau-a)
and Pearson product-moment correlation coefficient (r). In both
cases, we use the 0.05 significance level. Each correlation coef-
ficients measure similarity, taking values from −1 to 1. Values
close to both ends represent negative and positive correlations,
respectively. While values in a range of absolute 0.2 around zero
denote absence and insignificant correlation. In our case, it refers
to the degree to which a pair of variables are related. Concretely,
the two variables we study characterize the syntactic and seman-
tic similarity between faults and mutants. Particularly, we use
the BLEU score as a syntactic similarity metric and the Ochiai
coefficient as a semantic similarity metric (later on, during the
discussion and threats to validity sections, we also include other
syntactic and semantic metrics). Therefore, correlation measures

whether the two variables are related and indicate a predictive re-
lationship that can be exploited in practice, i.e., aiming at syntac-
tic similarity instead of semantic as done by many approaches,
e.g., DeepMutation. To evaluate the magnitude of difference
between observed groups, we calculate the Vargha and Delaney
A12 effect size [56]. A12 values over 0.56, 0.64 or 0.71 indicate
a small, medium or large difference between two populations,
respectively.

VII. EMPIRICAL EVALUATION

A. RQ1: Syntactic and Semantic Similarity Between Seeded
and Real Faults

Fig. 2(a) shows the syntactic and semantic similarity values of
the mutants created with different tools. Interestingly, we notice
that while many of the mutants have high syntactic similarity,
their semantic similarity is scattered from 0 to 1. This seems
to imply that the relationship between the two metrics is weak.
Fig. 2(b) depicts syntactic and semantic similarity values for all
mutants with a syntactic similarity greater than 0.8. We notice
that the mutants behaving as faults (obtaining Ochiai 1) are both
syntactically similar and dissimilar to the faults (see the plots’
top values, y-axis). We also observe that most mutants that are
syntactically close to real faults (BLEU near 1) behave very
differently (Ochiai near 0), indicating that the relationship is
weak even when seeded faults are syntactically close to real ones.

These results are on the class granularity level, and therefore
their syntactic and semantic changes may be impacted by the
“size” of the seeded faults. We, thus, analyse the results at
method-level granularity as well. Fig. 2(c) shows the syntactic
and semantic similarities for the mutants that reside on the same
methods as the real faults. In this case, we see a similar trend
with the class-level results, i.e., both syntactically similar and
dissimilar mutants behave exactly like real faults. Additionally,
when syntactic similarity is close to 1, the semantic similarity is
scattered from 0 to 1.

To further analyze this relationship, we investigate whether
seeding faults with small syntactic distance results in semanti-
cally close faults. The key objective is to check whether there is
some effect when we have a high syntactic similarity as well as
high semantic similarity.

Fig. 2(d) shows the distribution of semantic similarities when
we group mutants according to their syntactic similarity. We ob-
serve that semantic similarity is uniformly distributed between
mutants that are syntactically similar and dissimilar to the real
faults. This observation is visible even when considering only
mutants with very close semantic similarity. This evidence that
smaller syntactic transformations do not imply smaller semantic
changes; at the same time, bigger syntactic changes do not imply
bigger semantic changes.

Additionally, we find that 39% of studied faults do not have
syntactically close mutants that are semantically close (Ochiai>
.8). This percentage is roughly the same as that of syntactically
distant mutants that are semantically close ( 41%). This ob-
servation indicates no relation between metrics since analysing
either syntactically close or syntactically distant mutants, leads
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Fig. 2. Syntactic and semantic similarity between seeded and real faults (RQ1).

Fig. 3. Syntactic and semantic similarity between seeded and real faults (RQ1).

to the same number of faults (w.r.t., mutants being semantically
similar independently of their syntactic similarity). Fig. 3(a))
shows the same data for the semantically closest mutants. From
these data, we observe no relationship even in the extreme cases
of the most syntactically close and distant mutants. By observ-
ing this plot, it becomes evident that there is no relationship
between the two variables (note Pearson and Kendall corre-
lation coefficients to be both < .1, indicating no relationship;
plus, via Wilcoxon statistical test, we find no sign that higher
syntactic similarity leads to higher values of semantic similarity
(p < 0.05).

We also studied what is the average closeness of the seman-
tically and syntactically closest fault mutant pairs (respectively,
the Fig. 3(b) and (c)). Our results show that the average semantic
closeness of the syntactically closest fault mutant pairs is 0.4192;
the closeness of the syntactically distant mutant pairs is 0.4020,
while the closeness of the randomly picked mutants is 0.4058.
The difference between these averages is negligibly small to
suggest a link between syntactic and semantic similarity metrics.
Wilcoxon statistical test further confirms these observations by
showing no statistically significant difference between the av-
erage semantic closeness of syntactically close and the average

semantic closeness of syntactically distant mutants (p < 0.05),
plus, no statistically significant difference between the average
semantic closeness of syntactically close and randomly sampled
mutants. Similar results are observed, leading to the same con-
clusions when calculating the average syntactic closeness of the
semantically closest (0.9550) and semantically distant mutants
(0.9530) and randomly sampled mutants (0.9543).

Fig. 3(d) depicts a follow-up analysis in which we study
the intersection of a set of semantically closest and a set of
syntactically closest mutants. Our results show that the intersec-
tion between the top five syntactically and semantically closest
mutants is of only 5%, refuting any implication between both
metrics in 95% of the cases. We observe the same pattern and
small semantic and syntactic similarity overlapping for the top
10, 20 mutants, and 5 and 10 percent of mutants, 10%, 17%, 8%
and 13%, respectively. Our results discover a small difference
( 2%) when comparing semantically and syntactically closest
mutants overlapping with the overlapping of the semantically
closest and syntactically distant ones (and vice versa). This
analysis again confirms our previously shown evidence, i.e.,
even for a set of mutants with the metrics closest to real faults,
semantics behaves independently of syntactic and vice versa.
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TABLE IV
RQ2 PERCENTAGE OF RESEMBLED REAL FAULTS - QUARTILES REPRESENT

MUTANTS SORTED BY SYNTACTIC SIMILARITY

TABLE V
RQ2: MEAN RATIO OF MUTANTS RESEMBLING REAL FAULTS - QUARTILES

REPRESENT MUTANTS SORTED BY SYNTACTIC SIMILARITY

By examining the faults that do not have syntactically close
mutants that are semantically close and the average closeness
of semantically and syntactically closest fault mutant pairs, we
confirm the previous results and find no indication of a pattern
or relationship that would suggest that syntactic measurement
leads to the semantic closeness of mutants and real faults.

B. RQ2: Semantically Resembling Real Faults

Table IV summarizes the results related to the percentage of
resembled faults, i.e., having at least one mutant that semanti-
cally resembles the fault. The column Faults refers to the number
of faults studied per project, and column∃Semantic Mutant refer
to the percentages of faults with at least one semantically similar
mutant. We sort mutants based on their syntactic similarity and
group them into 4 buckets/quartiles (columns Q1, Q2, Q3 and
Q4 in increasing order). Table V records the ratio of mutants that
are semantically similar per fault (column Ratio) and the ratio
per syntactically similar bucket.

TABLE VI
RQ3: MEAN RATIOS OF MUTANTS RESEMBLING REAL FAULTS

TABLE VII
RQ3 PERCENTAGE OF RESEMBLED REAL FAULTS - QUARTILES REPRESENT

MUTANTS SORTED BY SYNTACTIC SIMILARITY

For the 592 real faults, we observe that seeding techniques
can produce at least one artificial fault that is semantically
similar to the real one for 417 of them (70.51%). From the
distribution of the results over different quartiles, we see the
absence of trends suggesting that higher syntactic similarity does
imply higher semantic similarity. For example, the project with
the highest number of faults studied (JacksonDatabind – 102
faults) has quite similar ratios among the quartiles, i.e., 60.78%,
57.84%, 53.92%, 62.74% Overall, on average, across all studied
faults, the distribution of faults that can be resembled is 55.19%,
55.55%, 52.67%, 57.96%.

Table V shows a similar distribution across quartiles. On aver-
age, the percentage of seeded mutants with semantic similarity
is 11.77%, while over different levels of syntactic similarity, the
distribution is 3.01%, 2.95%, 2.59% and 3.20%, respectively.

C. RQ3: Comparing Seeding Techniques

Table VI records the mean ratios of mutants that resemble
the real faults. We observe that, on average, between 1.99%-
2.94% of mutants resemble the real faults, independently of
their syntactic similarity. Table VII records the percentage of real
faults that were resembled by at least one mutant produced by
each tool. We observe that PiTest resembles 65.11% of the real
faults, while μBERT resembles 61.39%, DeepMutation 9.76%
and IBIR 76.44%. Interestingly, μBERT and PiTest resemble a
similar number of the real faults, while μBERT identifies 0.6%
of real faults not identified by other tools (Fig. 4), while PiTest
identifies 1.7%. IBIR resembles 76.44% of faults, and 5.2% is
not identified by the other tools. However, when we compare
the performance when controlling the number of seeded faults
(Table VIII), we observe that when generating a number of
mutants equal to the number of mutants generated by DeepMu-
tation, μBERT, IBIR and PiTest perform similarly, resembling
real faults with 43.84%, 45.34% and 41.72%, respectively. When
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Fig. 4. Real faults with at least one semantically similar mutant by each tool.
- - - .

TABLE VIII
RQ3 PERCENTAGE OF RESEMBLED REAL FAULTS WHEN THE NUMBER OF

MUTANTS IS CONTROLLED - DIFFERENT TOOLS USED AS A BASELINE

generating the same number of mutants withμBERT, we observe
that both IBIR and μBERT outperform PiTest by around 10%.
And when the number of seeded faults is higher, (equal to what
PiTest produces), IBIR outperforms PiTest for 8.05% of real
faults resembled. We observe that PiTest performance is the
lowest indicating a large number of redundancies. Regarding
exact matching, IBIR successfully resembles 1.98% of the faults,
outperforming the rest of the tools, which only managed to match
around 1%. DeepMutation resembles real faults also resembled
by other tools, indicating that it is probably subsumed by them.

VIII. DISCUSSION

A. Use Cases of Fault Seeding

Over the years, fault seeding has served multiple purposes,
e.g., testing, dependability analysis, debugging etc., as found
by the survey work of Papadakis et al. [42]. The survey also
identifies that fault seeding is primarily used in research for a)
mutation-based test assessment, i.e., empirical and experimental
evaluation of test techniques (seeded faults are used as a means

to compare test techniques based on the number of faults they
detect), and b) mutation-guided testing, i.e., guiding testers
to write test cases (by using seeded fault as objectives to be
covered).

These two use cases are often confused and considered as
being equal [15], while in fact they are different–though related.
This is not only because of the different underlying processes
but also due to the involved assumptions.

Process: In mutation-based test assessment, a) case, tests are
independently produced by external parties, while in mutation-
guided testing, b) case, tests aim at detecting specifically targeted
faults. This implies an untargeted case (case a)) that starts from
independent test cases and aims at estimating their fault detection
potential versus a targeted one (case b)) that starts from seeded
faults then goes to tests that aim at finding real faults.

In terms of injected faults, this difference means that in case
a), one needs seeded faults that are as close (semantically) as
possible to the real ones in order to estimate their test potential,
while in case b), one needs seeded faults that lead to tests that
detect faults. In essence, real faults in case a) should be detected
by every test case that detects a seeded fault, while in case b)
should be detected by the subset of test cases that detect a seeded
fault. For example, consider the seeded faults M0 and M1 from
Fig. 1 that both are detected by tests that also detect the real fault
B. This means that for the case b) both M0 and M1 are equally
useful since they can both lead to a test that detects the real fault.
However, for the case a) (test assessment), M0 is better than
M1 since it does not underestimate the fault detection potential
of t1.

Assumptions: In mutation-based test assessment, a) case, it is
assumed that the tested/asserted program behaviour is correct,
while in mutation-guided testing, b) case, this is not the case
(testers judge the observed behaviour). These assumptions of-
ten imply differences in both the definition of fault detection
(deciding whether mutants are killed) and the used artifact (by
experimental studies). The difference in the definitions is usually
that, in a) case, the behaviour of seeded faults is contrasted with
that of the specifications (through test assertions) while, in b)
case, that is contrasted with that of the program under test, which
may or may not be correct. Similarly, experiments targeting case
a) are applied on program versions where test suites pass, while
in case b) experiments are applied on buggy program versions
where test suites fail, i.e., detect some real faults.

In essence, the differences in the assumptions necessitate a
different treatment in the way seeded faults are detected and
used. For instance, it is unclear what causes a test failure when
executing a test in a buggy program version where a fault has
been seeded. Typically this case is treated by considering the be-
haviour delta between the buggy and the faulty seeded versions
(seeded on the buggy version) [15]. However, this behaviour
delta between the buggy and the seeded fault is different from
the behaviour delta between the specifications and the buggy
version as has been demonstrated by Chekam et al. [15].

Similarly, the seeded faults on the fixed and the buggy pro-
gram versions differ. Consider, for example, the case of an
omission fault where an if condition is missing. This fault is
easy to emulate if one seeds faults in the non-buggy version by
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TABLE IX
SEMANTIC SIMILARITY AND FAULT DETECTION PROBABILITY (FDP) BETWEEN

THE MUTANTS AND THE FAULT

simply deleting the related condition. However, the fault is hard
to detect if one seeds faults in the buggy version since the related
code is not there (it is hard to seed a fault that can detect such
a bug).

The above discussion aims at detailing the differences among
the two main use cases of fault seeding and motivating the need
for appropriate metrics that fit well with the envisioned appli-
cation use cases. In the following subsection we demonstrate
the importance and appropriateness of using semantic similar-
ity, as opposed to fault detection estimates, used by previous
studies [13], [40], in the context of test assessment.

B. Semantic Similarity versus Fault Detection Probabilities in
Test Assessment

Mutation testing has long been based on the notion of fault
coupling [18], [38] that assumes couplings among different
types and (syntactic) sizes of faults. This assumption has been
validated by recent studies that report large semantic overlaps
between simple and complex faults [28], [38], [41]. Undoubt-
edly, faults that couple with real ones are the most important
when one performs mutation-guided testing (the b) use case
of fault seeding that was described in the previous section)
since the starting point is the seeded faults. However, this is
not necessarily the case for the test assessment (the a) use case
of fault seeding that was described in the previous section) since
we want accurate estimations of test effectiveness.

Previous studies [13], [40] have defined FDP, as a probabilis-
tic form of fault coupling, as a target metric of fault seeding
that measures subsumption of a real fault by a mutant, in the
context of mutation-guided testing. In essence, the metric form
an approximation of the fault detection probability, w.r.t. a
real fault B, of the tests that detect a seeded fault M . The
metric is, therefore, computed as the ratio of the number of
tests detecting both M and B to the number of tests detecting
M . Precisely,FDP (B,M) = |fTSB∩fTSM |

|fTSM | , where fTSB and
fTSM denote the set of tests detecting the fault and killing the
mutant, respectively.

To illustrate this concept, let us consider the example of Fig. 1.
The mutant killing matrix is presented in Table IX, together
with the semantic similarity and fault detection probabilities
between the mutants and the fault (columnsOchiai(B,Mi) and
FDP (B,Mi), respectively).

An interesting observation from Table IX is that the FDP of
mutants M0 and M1 is 1, since all the tests killing them also

find the fault, but the Ochiai coefficients (semantic similarity
metric) distinguish between these mutants (Ochiai(B,M0) = 1
but Ochiai(B,M1) = 0.70). This example shows that in the
case of mutation-guided testing, both M0 and M1 are of equal
value (since targeting either of these faults leads to tests that
detect the real fault). However, in the case of test assessment,
M0 is preferable over M1 since it does not underestimate the
test potential of t1. Consider, for example, 10 combinations
of test suites of two tests (C(|{t0...4}|, 2) =

(|{t0...4}|
2

)
= 10).

M1 mistakenly evaluates the fault detection potential of t1 − t2,
t1 − t3, t1 − t4 (3 out of 10) as being non-effective, while M0

correctly evaluates them all. Similarly, M6 is better than M1

since it mistakenly evaluates the fault detection potential in 2
out of 10 cases, i.e., considers that t2 − t3, t2 − t4, are effective
while they are not.

The above reflects the differences between the metrics of
Table IX. The Ochiai coefficient for mutant M6 is 0.82, being
the second top-ranked fault, making it preferable overM1. While
FDP would prefer M0 and M1 over M6, which is actually the
case if one is guided by the faults. Another difference occurs
between mutants M2 and M5; while Ochiai for M5 is higher
than for M2, the opposite happens when we use FDP .

These examples aim at demonstrating the use of the metrics
in the fault injection context. By considering these examples
and the differences outlined in the previous section, it should
be clear that both metrics are closely related, meaning that one
could approximate the other, but semantic similarity (Ochiai)
is a better fit for test assessment, while fault detection estimates
(FDP ) are a better fit for mutation-guided testing.

To empirically demonstrate these differences, we design a
related test assessment experiment, reflecting the example given
above. We thus, treat semantic similarity and fault detection
estimates as estimators of the actual test assessment potential
of the mutants and compute their related error. To measure this,
we use the Mean Squared Error (MSE) of the estimators with
respect to the actual ratios of fault detection potential of test
suites, i.e., the ratio of test suites that detect both the seeded and
the real fault over the number of test suites that detect either
of them. The MSE is typically used as a quality indicator of
the estimated values, in this case, semantic similarity and fault
detection estimates, and aims at reflecting the associated risk of
using them.

In this analysis, we randomly pick 100 test sets of equal size,
determined by the ratios of tests detecting the real faults, in
order to have a balance between failing and passing sets. We
then computed the MSE values on the faults of our dataset,
which have more than one failing test, 114 faults in total, of
both semantic similarity and fault detection estimates for all
available mutants. We selected cases with more than one failing
test because the metrics are almost the same in all other cases.

Fig. 5 depicts the MSE errors of both estimators. These results
show that both metrics have low error rates, with semantic
similarity yielding statistically significantly lower errors with
sizable differences, i.e., A12, indicating that semantic similarity
is better suited for test assessment.

When exploring further, we observe that despite the clear rela-
tionship between both semantic metrics, they prioritize mutants
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Fig. 5. Semantic Similarity yields significantly lower Mean Squared Errors
in its assessments than Fault Detection Probability. The results are statistically
significant with 99% of confidence and with a high effect size of 0.82.

Fig. 6. Overlapping between the set of mutants with Ochiai coefficient greater
than 0.8, and the set of mutants with FDP greater than 0.8. The figure shows
significantly low overlapping between mutant sets, indicating that the metrics
are appropriate for different use cases even though they are strongly related.

differently. For instance, Fig. 6 shows two sets of mutants -
one with high Ochiai and one with high FDP - and provides
evidence that the overlapping is significantly low; only 23% of
the mutants with a FDP greater than 80% have also an Ochiai
greater than 80%. This may explain why the sets of mutants are
distinct for different use cases, and particularly the preference
of the semantic similarity metric (Ochiai) for test assessment.

Nevertheless, we also study if there is any relationship be-
tween syntactic similarity and FDP (fault subsumption) as a
semantic similarity metric, instead of using Ochiai. We find that
there is no relation and the message conveyed is the same as when
using Ochiai as a semantic similarity metric, that real faults are
subsumed independently of their syntactic similarity. On average
all tools subsume 80.39% of studied faults, while different
quartiles Q1, Q2, Q3, Q4 show 66.41%, 66.40%, 63.02% and
67.78%, respectively. We also find that different tools (PiTest,
IBIR, μBERT, and DeepMutation) subsume 74.41%, 85.58%,
71.16%, 12.09% of real faults, respectively - keeping the same
distribution as we report studying semantic similarity. Overall,
the answer to the studied research questions would be similar if
we would adopt a related but different semantic metric such
as FDP. We provide further figures and tables regarding the
subsumption of faults with FDP on the complementary web
page:

https://mutationtesting-user.github.io/bugs_vs_mutants/

Fig. 7. Sensitivity of mutants from the same location (ΔBLEU |M2 −M1|
over ΔOchiai|M2 −M1|). Small syntactic changes lead to diverse semantic
changes.

C. Sensitivity to Program Locations

One may wonder how sensitive the syntactic and semantic
similarity metrics are with respect to the seeded faults’ locations.
In other words, these metrics may reflect the utility of the
locations and not of the faults. Thus, we study the variance of the
syntactic and semantic similarity of mutant pairs generated from
the same location (we do not consider DeepMutation since it
creates only one mutant per method). Fig. 7 records the distances
between the syntactic and semantic similarity of mutant pairs,
taken from a) the same randomly picked locations and b) from
the bug-fixing locations. We observe that while there is almost
no syntactic difference between mutants from the same location,
the semantic similarity varies significantly. There are a few
outliers in which syntactic similarity varies up to 16% between
mutants from the same location. Some PiTest mutations remove
a complete line or replace entire boolean conditions with true
(as shown in the motivating example), affecting the bytecode

https://mutationtesting-user.github.io/bugs_vs_mutants/
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generated. Fig. 7 records a similar trend for all studied tools.
Please refer to the accompanying website for results related to
additional studied syntactic metrics [6].

Overall, these results support the conclusion that there
is no link between syntactic and semantic similarity. Inter-
estingly, even small syntactic changes in the same instruc-
tion can have a large and diverse impact on the program
semantics.

D. Seeding Faults With DeepMutation

Guided by intuition, one would assume that DeepMutation
- as a mutant generation tool based on deep learning - shall
be able to generate more complex (stronger) faults and thus
complement and subsume other tools. However, we observed
that the tool seeds faults which are easy to kill or, in other words,
the tests cannot miss behaviour produced by those kinds of
seeded faults as they are overly complex, i.e., replacing too many
code elements and thus significantly changing code logic. In
particular, we found that DeepMutation mutants are, on average,
identified by 10 tests more than the mutants from other tools.
Moreover, we analysed seeded faults and found that from all
seeded, 46% does not compile. In contrast, 29% are duplicates
or not killed – leaving 25% of seeded faults suitable for mutation
analysis. Out of those seeded faults, no fault can resemble faults
that other tools cannot (Fig. 4), making the tool subsumed by
other tools.

Additionally, to further provide qualitative remarks on seeded
faults, we provide two examples in which seeded faults indicate
the technique’s potential, even though the mutants are consid-
ered weak. In the example of a mutant in a method taken from
project JxPath, the mutant alters the ternary operator condition,
which is a syntactically adequate location for a bug; however,
the mutation does not consider the return type, which results in
a compilation error. In the second example, where we observe a
mutant from the Mockito project, the technique removes the
complete conditional check of whether an object is a valid
instance, resulting in a weak mutation that cannot escape a test
suite. Instead, the conditional check should be altered instead
of removed, as those faults are subtle and represent a mistake
that a programmer would make. However, the mutant from the
second example alters the core logic of the code, which makes
it unlikely to escape the majority of test cases (Ochiai metric is
≈ 0.02.

Moreover, using semantic similarity for reinforcement met-
rics for learning algorithms should bring more practical arti-
ficial faults than using syntactic metrics. This knowledge can
provide practitioners with insights and pave the way to discover
more fine-grained metrics to approximate semantics over exist-
ing ones.

E. Implications for Practice

Our key finding regards the mismatch of syntactic and se-
mantic similarity. This implies that research studies should not
attempt to approximate semantic similarity through syntactic
similarity (as currently done by many methods). Therefore,
researchers should focus on measuring the semantic sensitivity
of their results and perhaps attempt learning based on semantic
features rather than solely syntactic ones. For instance, Deep-
Mutation aims at mimicking syntactically real faults thereby
resulting in being relatively weak and probably subsumed by
traditional mutants.

Additionally, our results shed light on the semantic similarity
aspect of real and seeded faults that has not been researched by
the mutation testing literature. Therefore, we believe our work
can improve our understanding of this fundamental relationship
and offers a starting point for future research on the semantic
approximation of real faults.

Moreover, the Ochiai score is a metric used by previous work
in order to approximate the semantic similarity between a bug
and a seeded fault. We thus expect it to diverge from the true
similarity due to the following two reasons. First, there is some
noise due to the incompleteness of the test suit used, and second,
due to the coarse granularity level of the test failures, i.e., we
consider test failures in our approximation and not the exact
program output. We aimed at mitigating both factors by using
mature and strong test suites, augmented with automatically gen-
erated tests and manually estimated the level of error due to the
application of semantic similarity at the test failure level(found
it ≈ 2.8% as reported in Section IX).

In our work, we also report on the existence of a specific
category of seeded faults - the seeded faults that are syntactically
dissimilar but semantically similar to real bugs. This category
can provide implications for practice towards increased test
assessment by providing targeted diversity represented through
code comprehension.
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IX. THREATS TO VALIDITY

To reduce external validity threats, we selected a new and
significant benchmark of faults that have not been used by
previous studies. We excluded some faults for technical rea-
sons, making our study with 592 faults from 15 mature and
well-tested open-source real-world projects. Nevertheless, we
do not exclude the generalization threat in other domains. As we
already discussed, while conducting our experiments, we could
not compile or run all the faulty program versions available in
Defects4J.

We also acknowledge the threat that Defects4J faults may
not be representative. Thus, our results reflect the similarities
and the “representativeness” of the mutants we study with the
Defects4J curated fault set. We believe that Defects4J faults form
a good sample for our study since they have been independently
mined, through a systematic procedure that does not favour in
any direct way their semantic or syntactic similarity with our
mutants. Future research should address this concern through
replication studies on other datasets.

Internal validity threats emerge from the tools’ specificity and
configuration, such as the number of mutants they generate and
the source-code locations they are applied to. For instance, Deep-
Mutation produces fewer candidate mutants than any other tools,
while μBERT, IBIR, and PiTest generate mutants everywhere,
in a brute-force way. To mitigate this threat, we analyze the
effectiveness of the tools under the same number of mutants and
the same locations and observe a similar trend.

Unfortunately, we did not manage to compile and run the
latest master-branch [5] version available of DeepMutation. We
thus had to handle the tool from the resources and pre-trained
artefacts provided in the repository.

Additional threat mitigation actions involved the analysis
of mutants at different granularity levels (class, method, and
location of patch). We also restricted the scope of analysis to the
artefacts where the bug fixes were available to reduce noise from
irrelevant mutants and tests. We ensured that all mutants reside
on the same class/method/statement as the target faults. Thus,
we compare different mutated versions w.r.t. their similarities
and distances from the corresponding fixed and faulty version.

To measure semantic similarity, we used the well-known
Ochiai score that has been regularly used in the fault-seeding
community as a representative metric to capture the semantic
similarity between a seeded and real fault. The metric takes into
consideration test execution output and neglects the lower level
of granularity, i.e., whether the test crashed due to error or due to
failure, which may result in a divergence of behaviour between
a bug and a mutant.

To study this threat, we conducted a manual follow-up anal-
ysis. In the manual study, due to the inability of Defects4J to
provide fine-grained test outputs, we sample randomly from the
mutant pool and analyze them in isolation. By taking around
4000 mutants that obtained an Ochiai coefficient equal to 1,
which gives a confidence level of 99% with a confidence interval
of 2%, we found that just approximately 2.8% of mutants show
potentially different behaviour than the real fault (one triggers a
failure while the other triggers an error), even though the same

test captures them. This percentage of mutants does not impact
the message we want to convey with our study; nevertheless, we
found this concern necessary to inform practitioners.

In addition to BLEU scores, for measuring syntactic similar-
ity, we also used Cosine [48] and Jaccard [36] similarity coeffi-
cients [6]. The results did not show any significant differences
w.r.t. the ones of BLEU scores. It is worth noting that these
metrics appear less often in the literature, and in an attempt to
keep the story clear and concise, we provide results on these
metrics on an accompanying website. Nevertheless, please refer
to the accompanying website [6] for additional details on using
Cosine and Jaccard similarity.

Overall, our study aims to raise awareness of using semantic
and syntactic evaluation metrics in fault seeding studies since
understanding is shaken by the rapid integration of “intelli-
gence” in the current software testing practices. In the spirit of
discarding all misinterpretations, we declare that it is far from
our intention to generalize the studied approaches and raise the
claims regarding their future usage as we believe in very much
needed future studies on their utilities and effectiveness that will
undoubtedly result in new tools. Our study targets the current
state-of-the-art tools and embedded underlined approaches to
shed more light on the studied area and pave the way for
future work.

X. RELATED WORK

Fault seeding and particularly mutation testing is widely used
in experimental studies as a way to compare and assess testing
techniques [42]. Assuming that seeded faults include properties
that are in some sense similar to real ones [9]. Interestingly, mu-
tation testing, one of the most widely used techniques [42], intro-
duces faults that are syntactically simple and are quite different
from real faults that are in their majority more complex [23]. In
particular, the study of Gopinath et al. [23] provided empirical
evidence showing the misalignment between seeded and real
faults that are produced by traditional mutation operators and
concluded that real faults are rarely equivalent to mutant faults.

To deal with this issue, Brown et al. [12] proposed inferring
fault seeding patterns, w.r.t, mutation operators, by using histor-
ical fault-fixing commits. The idea was to form (syntactic) fault
patterns that resemble (in terms of syntax) real historical faults.
Their results show that syntactic fault patterns can be mined
from code versioning systems, and these differ (syntactically)
from those used by modern mutation testing tools.

DeepMutation [53], a neural machine translation tech-
nique [55] that automatically infers fault patterns from historical
fault-fixing commits, was proposed. It was shown that DeepMu-
tation resembles exact matches of 45% of real faulty cases while
achieving relatively good syntactic similarity scores in most of
the cases. SemSeed [45] aims to infer faulty patterns from bug
fixes and to generalize them by appropriately adapting them
to the particular local code, i.e., context. Although powerful,
SemSeed operators on JavaScript programs make its application
in our experiment hard.

More recently, mutation monkey [11] was built by mining
frequently occurring faults from complex changes that caused
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operational issues at Facebook [11]. The analysis of these faults
indicated they were good at finding holes and missing tests in
the systems under test. Interestingly, the above studies aim at
mimicking (syntactically) real faults, and as a result, they have
been evaluated with “static” syntactic-nature metrics such as
syntactic similarity. Hence, this raises the question of whether
they are suitable for dynamic analysis, such as mutation test-
ing, i.e., incorporating realistic semantic fault properties, and
how they compare with traditional mutation testing, which we
investigate here.

Traditionally mutation testing aims at seeding faults using
simple syntactic changes. Showing empirical evidence of the
coupling effect, [18] states that simple faults subsume almost
all the complex ones [38]. This implies a more general as-
sumption about the “size” of faults [39], suggesting that seeded
faults with small syntactic distance from the original program
introduce small semantic deviations (subtle faults), which form
valuable test requirements [14] and lead to high fault revealing
potential [40].

The coupling between seeded faults has also been considered
a source of bias in mutation testing studies as it introduces large
overlaps between the seeded fault instances [28], [35], [41].
Nevertheless, the question of how to select optimal mutant-fault
sets falls outside the scope of this work.

XI. FUTURE WORK

Our work paves the way for researchers to investigate proper-
ties which suggest a semantic similarity. In particular, research
on semantic similarity may be more fruitful than syntactic met-
rics. Moreover, in the area of fault seeding, some experimental
work uses different seeded fault properties to reinforce learning
algorithms. We believe, in particular, that if not semantic metrics
(such as Ochiai or Fault Detection Probability), there is a po-
tential interest towards new metrics that capture the fine-grained
similarity between seeded and real faults, i.e., traces, data depen-
dencies, code or test assertions actual values etc., which should
be investigated with some sort of change impact analysis.

Additionally, we report on the existence of mutants that are
syntactically dissimilar but semantically similar. These mutants
may be proven useful in fault comprehension and thus could be
interesting to be studied further.

We also observe that IBIR is the tool that resembles the most
observed real faults and subsumes most of the faults and, thus,
other tools. However, we identified a potential for improvement
as other tools resemble bugs that IBIR does not, suggesting an
investigation into potential faulty patterns that the tool misses.
Additionally, as food for thought, we point to the number of
faults that IBIR seeds, which is significantly higher than other
tools, making another new question arise of how cost-effective
the tools are.

XII. CONCLUSION

We investigated the link between syntactic and semantic sim-
ilarity of seeded and real faults in the context of mutation-based
test assessment. Our results showed that many seeded faults be-
have similarly to real ones (they have high semantic similarity),

while at the same time having low syntactic similarity (to real
faults). We also observed the opposite case, i.e., faults with high
syntactic similarity having low semantic one. This means that
we found no evidence suggesting any link between syntactic
and semantic similarity, except, of course, in the case of exact
matches. When considering the ability of fault injection tools
to resemble real faults, we found that 65.11%, 76.44%, 61.39%
and 9.76% of the real faults in Defects4J V2 are semantically
resembled by PiTest, IBIR, μBERT and DeepMutation faults,
respectively. For further inquiry about our data, figures and
examples, please refer to the webpage of the paper:

https://mutationtesting-user.github.io/bugs_vs_mutants/
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