Abeywickrama, H. V., Jayawickrama, B. A., He, Y., & Dutkiewicz, E. (2018). Comprehensive energy consumption model for unmanned aerial vehicles, based on empirical studies of battery performance. IEEE Access, 6, 58383–58394. 10.1109/ACCESS.2018.2875040. DOI: 10.1109/ACCESS.2018.2875040
Adya, A., Sharma, K. P., & Nonita, (2019). A comparative analysis of mobility models for network of UAVs. In A. B. Gani, P. K. Das, L. Kharb, & D. Chahal (Eds.), Information communication and computing technology (pp. 128–143). Singapore: Springer. 10.1007/978-981-15-1384-8_1110.1007/978-981-15-1384-8_11. DOI: 10.1007/978-981-15-1384-8_1110.1007/978-981-15-1384-8_11
Alba, E., Luque, G., & Nesmachnow, S. (2013). Parallel metaheuristics: Recent advances and new trends. International Transactions in Operational Research, 20(1), 1–48. 10.1111/j.1475-3995.2012.00862.x. DOI: 10.1111/j.1475-3995.2012.00862.x
Albani, D., Nardi, D. & Trianni, V. (2017). Field coverage and weed mapping by UAV swarms. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), (pp 4319–4325). IEEE. https://doi.org/10.1109/IROS.2017.8206296
ArduPilot Dev Team. (2021). APM planner 2. Retrieved January 15, 2021, from http://ardupilot.org/planner2/
Bassoli, R., Sacchi, C., Granelli, F. & Ashkenazi, I. (2019). A virtualized border control system based on UAVs: Design and energy efficiency considerations. In 2019 IEEE aerospace conference, (pp. 1–11). IEEE. https://doi.org/10.1109/AERO.2019.8742142
Batista da Silva, L. C., Bernardo, R. M., de Oliveira, H. A. & Rosa, P. F. F. (2017). Multi-UAV agent-based coordination for persistent surveillance with dynamic priorities. In 2017 International Conference on Military Technologies (ICMT) (pp. 765–771). IEEE. https://doi.org/10.1109/MILTECHS.2017.7988859
Brust, M. R., Danoy, G., Bouvry, P., Gashi, D., Pathak, H. & Goncalves, M. P. (2017). Defending against intrusion of malicious UAVs with networked UAV defense swarms. In 2017 IEEE 42nd conference on local computer networks workshops (LCN workshops) (pp. 103–111). IEEE. https://doi.org/10.1109/LCN.Workshops.2017.71
Capitan, J., Merino, L., & Ollero, A. (2016). Cooperative decision-making under uncertainties for multi-target surveillance with multiples UAVs. Journal of Intelligent & Robotic Systems, 84(1–4), 371–386. 10.1007/s10846-015-0269-0. DOI: 10.1007/s10846-015-0269-0
Chelouah, R., & Siarry, P. (2000). Continuous genetic algorithm designed for the global optimization of multimodal functions. Journal of Heuristics, 6(2), 191–213. 10.1023/A:1009626110229. DOI: 10.1023/A:1009626110229
Chen, H., Wang, X. m. & Li, Y. (2009). A survey of autonomous control for UAV. In 2009 international conference on artificial intelligence and computational intelligence (pp. 267–271). IEEE https://doi.org/10.1109/AICI.2009.147
Dai, F., Chen, M., Wei, X., & Wang, H. (2019). Swarm intelligence-inspired autonomous flocking control in UAV networks. IEEE Access, 7, 61786–61796. 10.1109/ACCESS.2019.2916004. DOI: 10.1109/ACCESS.2019.2916004
DJI. (2021). DJI Matrice 300 RTK. Retrieved January 15, 2021, from https://www.dji.com/uk/matrice-300/.
Dronecode Project. (2021). MAVLink: Micro air vehicle communication protocol. Retrieved January 15, 2021, from https://mavlink.io/en/.
Elloumi, M., Escrig, B., Dhaou, R., Idoudi, H. & Saidane, L. A. (2017). Designing an energy efficient UAV tracking algorithm. In 2017 13th international wireless communications and mobile computing conference (IWCMC) (pp. 127–132). IEEE https://doi.org/10.1109/IWCMC.2017.7986274
Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning (1st ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co. Inc.
Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. Foundations of Genetic Algorithms, 1, 69–93. 10.1016/B978-0-08-050684-5.50008-2 DOI: 10.1016/B978-0-08-050684-5.50008-2
Harikumar, K., Senthilnath, J., & Sundaram, S. (2019). Multi-UAV Oxyrrhis marina-inspired search and dynamic formation control for forest firefighting. IEEE Transactions on Automation Science and Engineering, 16(2), 863–873. 10.1109/TASE.2018.2867614. DOI: 10.1109/TASE.2018.2867614
Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control and artificial intelligence. Cambridge: MIT Press. DOI: 10.7551/mitpress/1090.001.0001
Ismail, A., Bagula, B., & Tuyishimire, E. (2018). Internet-Of-Things in motion: A UAV coalition model for remote sensing in smart cities. Sensors, 18(7), 2184. 10.3390/s18072184. DOI: 10.3390/s18072184
Kanistras, K., Martins, G., Rutherford, M. J., & Valavanis, K. P. (2015). Survey of unmanned aerial vehicles (UAVs) for traffic monitoring (pp. 2643–2666). Netherlands, Dordrecht: Springer. 10.1007/978-90-481-9707-1_12210.1007/978-90-481-9707-1_122. DOI: 10.1007/978-90-481-9707-1_12210.1007/978-90-481-9707-1_122
Kerle, N., Nex, F., Gerke, M., Duarte, D., & Vetrivel, A. (2019). UAV-based structural damage mapping: A review. ISPRS International Journal of Geo-Information, 9(1), 14. 10.3390/ijgi9010014. DOI: 10.3390/ijgi9010014
Kim, J. H., Hong, H. G., & Park, K. R. (2017). Convolutional neural network-based human detection in nighttime images using visible light camera sensors. Sensors (Switzerland), 17(5), 1065. 10.3390/s17051065. DOI: 10.3390/s17051065
Kuiper, E. & Nadjm-Tehrani, S. (2006). Mobility models for UAV group reconnaissance applications. In 2006 international conference on wireless and mobile communications (ICWMC’06) (pp. 33–33). IEEE. https://doi.org/10.1109/ICWMC.2006.63.
Liu, Y., Liu, H., Tian, Y., & Sun, C. (2020). Reinforcement learning based two-level control framework of UAV swarm for cooperative persistent surveillance in an unknown urban area. Aerospace Science and Technology, 98, 105671. 10.1016/j.ast.2019.105671. DOI: 10.1016/j.ast.2019.105671
López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., & Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43–58. 10.1016/j.orp.2016.09.002. DOI: 10.1016/j.orp.2016.09.002
Luo, C., Miao, W., Ullah, H., McClean, S., Parr, G., & Min, G. (2019). Unmanned aerial vehicles for disaster management (pp. 83–107). Singapore: Springer. 10.1007/978-981-13-0992-2_7. DOI: 10.1007/978-981-13-0992-2_7
Lygouras, E., Santavas, N., Taitzoglou, A., Tarchanidis, K., Mitropoulos, A., & Gasteratos, A. (2019). Unsupervised human detection with an embedded vision system on a fully autonomous UAV for search and rescue operations. Sensors, 19(16), 3542. 10.3390/s19163542. DOI: 10.3390/s19163542
Ma, J. H., & Chen, Y. S. (2001a). Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I). Applied Mathematics and Mechanics, 22(11), 1240–1251. 10.1023/A:1016313804297. DOI: 10.1023/A:1016313804297
Ma, J. H., & Chen, Y. S. (2001b). Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (II). Applied Mathematics and Mechanics, 22(12), 1375–1382. 10.1023/A:1022806003937. DOI: 10.1023/A:1022806003937
Mademlis, I., Mygdalis, V., Nikolaidis, N. & Pitas, I. (2018). Challenges in autonomous UAV cinematography: An overview. In 2018 IEEE international conference on multimedia and expo (ICME) (pp 1–6). IEEE. https://doi.org/10.1109/ICME.2018.8486586.
Madni, A. M., Sievers, M. W., Humann, J., Ordoukhanian, E., Boehm, B. & Lucero, S. (2018). Formal methods in resilient systems design: Application to multi-UAV system-of-systems control. In Disciplinary convergence in systems engineering research (pp. 407–418). Cham: Springer. 10.1007/978-3-319-62217-0_29.
Ma’sum, M. A., Arrofi, M. K., Jati, G., Arifin, F., Kurniawan, M. N., Mursanto, P., et al. (2013). Simulation of intelligent Unmanned Aerial Vehicle (UAV) For military surveillance. In 2013 international conference on advanced computer science and information systems (ICACSIS) (pp. 161–166). IEEE. 10.1109/ICACSIS.2013.6761569.
McNeal, G. S. (2016). Drones and the future of aerial surveillance. George Washington Law Review Arguendo, 84(2), 354–416.
Messous, M. A., Sedjelmaci, H., & Senouci, S. M. (2017). Implementing an emerging mobility model for a fleet of UAVs based on a fuzzy logic inference system. Pervasive and Mobile Computing, 42, 393–410. 10.1016/j.pmcj.2017.06.007. DOI: 10.1016/j.pmcj.2017.06.007
Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical Association, 44(247), 335–341. 10.1080/01621459.1949.10483310. DOI: 10.1080/01621459.1949.10483310
NVIDIA. (2021). Jetson Nano Developer Kit for AI and robotics. https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/.
Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G. A., Ducatelle, F., Birattari, M., Gambardella, L. M., & Dorigo, M. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295. 10.1007/s11721-012-0072-5. DOI: 10.1007/s11721-012-0072-5
Rosalie, M., & Letellier, C. (2015). Systematic template extraction from chaotic attractors: II. Genus-one attractors with multiple unimodal folding mechanisms. Journal of Physics A: Mathematical and Theoretical. 10.1088/1751-8113/48/23/235101. DOI: 10.1088/1751-8113/48/23/235101
Rosalie, M., Danoy, G., Chaumette, S., & Bouvry, P. (2018). Chaos-enhanced mobility models for multilevel swarms of UAVs. Swarm and Evolutionary Computation, 41(2017), 36–48. 10.1016/j.swevo.2018.01.002. DOI: 10.1016/j.swevo.2018.01.002
Rössler, O. (1976). An equation for continuous chaos. Physics Letters A, 57(5), 397–398. 10.1016/0375-9601(76)90101-8. DOI: 10.1016/0375-9601(76)90101-8
Santos, V. G., Pires, A. G., Alitappeh, R. J., Rezeck, P. A. F., Pimenta, L. C. A., Macharet, D. G., et al. (2020). Spatial segregative behaviors in robotic swarms using differential potentials. Swarm Intelligence,. 10.1007/s11721-020-00184-0. DOI: 10.1007/s11721-020-00184-0
Sauter, J. A., Matthews, R., Van Dyke Parunak, H. & Brueckner, S. A. (2005). Performance of digital pheromones for swarming vehicle control. In Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems—AAMAS ’05 (p. 903). New York, NY, USA: ACM Press. 10.1145/1082473.1082610.
Scherer, J. & Rinner, B. (2016). Persistent multi-UAV surveillance with energy and communication constraints. In 2016 IEEE international conference on automation science and engineering (CASE) (pp. 1225–1230). IEEE. https://doi.org/10.1109/COASE.2016.7743546
Schroeder, A., Ramakrishnan, S., Kumar, M., & Trease, B. (2017). Efficient spatial coverage by a robot swarm based on an ant foraging model and the Lévy distribution. Swarm Intelligence, 11(1), 39–69. 10.1007/s11721-017-0132-y. DOI: 10.1007/s11721-017-0132-y
Sheskin, D. J. (2003). Handbook of parametric and nonparametric statistical procedures. Boca Raton: CRC Press. DOI: 10.1201/9781420036268
Stolfi, D. H., Brust, M. R., Danoy, G. & Bouvry, P. (2020a). A cooperative coevolutionary approach to maximise surveillance coverage of UAV swarms. In 2020 IEEE 17th annual consumer communications & networking conference (CCNC) (pp 1–6). IEEE. https://doi.org/10.1109/ccnc46108.2020.9045643.
Stolfi, D. H., Brust, M. R., Danoy, G. & Bouvry, P. (2020b). Competitive evolution of a UAV swarm for improving intruder detection rates. In 2020 IEEE international parallel and distributed processing symposium workshops (IPDPSW) (pp. 528–535). IEEE. https://doi.org/10.1109/IPDPSW50202.2020.00094.
Stolfi, D. H., Brust, M. R., Danoy, G. & Bouvry, P. (2020c). Emerging inter-swarm collaboration for surveillance using pheromones and evolutionary techniques. Sensors. 10.3390/s20092566.
Stolfi, D. H., Brust, M. R., Danoy, G., & Bouvry, P. (2020d). Optimizing the performance of an unpredictable UAV swarm for intruder detection. In B. Dorronsoro, P. Ruiz, J. C. de la Torre, D. Urda, & E. G. Talbi (Eds.), Optimization and learning (pp. 37–48). Cham: Springer. 10.1007/978-3-030-41913-4_4. DOI: 10.1007/978-3-030-41913-4_4
Tang, C., Wei, X., Wang, B., & Prasad, S. (2019). A cross-border detection algorithm for agricultural spraying UAV. Applied Engineering in Agriculture, 35(2), 163–174. https://doi.org/10.13031/aea.12520. DOI: 10.13031/aea.12520
Valentini, G., Ferrante, E., & Dorigo, M. (2017). The best-of-n problem in robot swarms: Formalization, state of the art, and novel perspectives. Frontiers in Robotics and AID. 10.3389/frobt.2017.00009.
Varrette, S., Bouvry, P., Cartiaux, H. & Georgatos, F. (2014). Management of an academic HPC cluster: The UL experience. In 2014 international conference on high performance computing & simulation (HPCS) (pp. 959–967). Bologna, Italy: IEEE. 10.1109/HPCSim.2014.6903792.
Yousif, H., Yuan, J., Kays, R. & He, Z. (2017). Fast human-animal detection from highly cluttered camera-trap images using joint background modeling and deep learning classification. In 2017 IEEE international symposium on circuits and systems (ISCAS) (pp. 1–4). IEEE. https://doi.org/10.1109/ISCAS.2017.8050762.
Zeng, Y., & Zhang, R. (2017). Energy-efficient UAV communication with trajectory optimization. IEEE Transactions on Wireless Communications, 16(6), 3747–3760. 10.1109/TWC.2017.2688328. DOI: 10.1109/TWC.2017.2688328
Zhao, J., Zhang, G., Tian, L. & Chen, Y. Q. (2017). Real-time human detection with depth camera via a physical radius-depth detector and a CNN descriptor. In 2017 IEEE international conference on multimedia and expo (ICME) (pp. 1536–1541). IEEE. https://doi.org/10.1109/ICME.2017.8019323.